tezuesh's picture
Upload folder using huggingface_hub
22d5f88 verified
# Copyright (c) Kyutai, all rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import typing as tp
from einops import rearrange
import torch
from torch import nn
from torch import distributed
import torch.nn.functional as F
class _CodebookForwardResult(tp.NamedTuple):
quantized: torch.Tensor
codes: torch.Tensor
metrics: tp.Dict[str, torch.Tensor]
class _VQForwardResult(tp.NamedTuple):
quantized: torch.Tensor
codes: torch.Tensor
loss: torch.Tensor
metrics: tp.Dict[str, torch.Tensor]
def _ema_inplace(moving_avg: torch.Tensor, new: torch.Tensor, decay: float) -> None:
moving_avg.data.mul_(decay).add_(new, alpha=(1 - decay))
def _uniform_init(*shape: int) -> torch.Tensor:
t = torch.empty(shape)
nn.init.kaiming_uniform_(t)
return t
def _sample_vectors(samples: torch.Tensor, num: int) -> torch.Tensor:
num_samples, device = samples.shape[0], samples.device
if num_samples >= num:
indices = torch.randperm(num_samples, device=device)[:num]
else:
indices = torch.randint(0, num_samples, (num,), device=device)
return samples[indices]
def _compute_entropy(usage: torch.Tensor) -> torch.Tensor:
# Usage is some unnormalized distribution.
proba = usage / usage.sum()
p_log_p = torch.where(
proba == 0, zero_scalar(usage.device), proba * torch.log(proba)
)
return -p_log_p.sum()
def _is_distributed() -> bool:
# Checks if we need to use distributed routines.
return distributed.is_initialized() and distributed.get_world_size() > 1
def zero_scalar(device) -> torch.Tensor:
"""Returns a 0. value on the given device without introducing a synchronization point."""
return torch.zeros([1], device=device)[0]
class EuclideanCodebook(nn.Module):
"""Codebook with Euclidean distance.
Args:
dim (int): Dimension.
codebook_size (int): Codebook size.
decay (float): Decay for exponential moving average over the codebooks.
epsilon (float): Epsilon value for numerical stability.
threshold_usage_ratio (float): Defines the threshold for the cluster usage under which a centroid
is replaced. This is expressed as a fraction of the usage a centroid would get under
a uniform distribution, so that it doesn't depend on the batch size etc.
replaced_usage_ratio (float): When replacing a centroid, use this as an initial centroid usage,
to avoid the centroid getting replaced too quickly.
check_unused_every (int): Check for unused centroids every `check_unused_every` iterations.
This is to avoid too many synchronization points.
Buffers:
cluster_usage (torch.Tensor): EMA of the cluster usage per batch, e.g. this will
be dependent on the batch size etc.
embedding_sum (torch.Tensor): EMA of the sum of the assigned points to each cluster.
In particular, this can be normalized by `cluster_usage` to obtain the
actual cluster centroids.
"""
def __init__(
self,
dim: int,
codebook_size: int,
decay: float = 0.99,
epsilon: float = 1e-5,
threshold_usage_ratio: float = 0.1,
replaced_usage_ratio: float = 1.0,
check_unused_every: int = 5,
):
super().__init__()
self.decay = decay
embedding = torch.zeros(codebook_size, dim)
self.dim = dim
self.codebook_size = codebook_size
self.epsilon = epsilon
self.threshold_usage_ratio = threshold_usage_ratio
self.replaced_usage_ratio = replaced_usage_ratio
self.check_unused_every = check_unused_every
self._next_unused_check = check_unused_every
self.register_buffer("_initialized", torch.tensor([False], dtype=torch.float))
self.register_buffer("cluster_usage", torch.ones(codebook_size))
self.register_buffer("embedding_sum", embedding)
self.register_buffer("_embedding", None, persistent=False)
self._cached_initialized = False
def _load_from_state_dict(self, state_dict, prefix, *args, **kwargs) -> None:
# Mapping old names to new names
mappings = {
"inited": "_initialized",
"cluster_size": "cluster_usage",
"embed_avg": "embedding_sum",
"embed_sum": "embedding_sum",
}
for old_name, new_name in mappings.items():
old_name = prefix + old_name
if old_name in state_dict:
value = state_dict.pop(old_name)
if new_name is not None:
state_dict[prefix + new_name] = value
super()._load_from_state_dict(state_dict, prefix, *args, **kwargs)
@property
def embedding(self) -> torch.Tensor:
if self._embedding is None:
embedding = (
self.embedding_sum / self.cluster_usage.clamp(min=self.epsilon)[:, None]
)
self.register_buffer("_embedding", embedding, persistent=False)
return embedding
return self._embedding
def _broadcast_buffers(self) -> None:
if _is_distributed():
for buffer in self.buffers():
distributed.broadcast(buffer, 0)
def _replace_expired_codes(self, samples: torch.Tensor, mask: torch.Tensor) -> None:
# Replaces expired centroids, as indicated by `mask` (a true value indicate the code needs to be replaced).
# The new codes are sampled from the batch `samples`.
new_vectors = _sample_vectors(samples, self.codebook_size)
replace_cluster_usage = (
self.replaced_usage_ratio * self.cluster_usage.sum() / self.codebook_size
)
self.embedding_sum[:] = torch.where(
mask[:, None], replace_cluster_usage * new_vectors, self.embedding_sum
)
self.cluster_usage[:] = torch.where(
mask, replace_cluster_usage, self.cluster_usage
)
def _reshape_input(self, x: torch.Tensor) -> torch.Tensor:
# Flattens all the dimensions but the last one, e.g. return a vector of shape `[N, D]`.
x = rearrange(x, "... d -> (...) d")
return x
def _reshape_codes(self, codes: torch.Tensor, shape: torch.Size) -> torch.Tensor:
return codes.view(*shape[:-1])
def _quantize(self, x: torch.Tensor) -> torch.Tensor:
# Projects each vector in `x` over the nearest centroid and return its index.
# `x` should be `[N, D]` with `N` the number of input vectors and `D` the dimension.
assert x.dim() == 2
dists = torch.cdist(x[None], self.embedding[None], p=2)[0]
codes = dists.argmin(dim=-1)
return codes
def encode(self, x: torch.Tensor) -> torch.Tensor:
"""Given a tensor `x` of shape `[*, D]`, returns a tensor of integer codes of shape `[*]`.
The codes are defined as the indexes of the centroids nearest to each vector in `x`.
"""
assert x.dtype.is_floating_point, f"Input should be floats, got {x.dtype}"
shape = x.shape
x = self._reshape_input(x)
codes = self._quantize(x)
codes = self._reshape_codes(codes, shape)
return codes
def decode(self, codes: torch.Tensor) -> torch.Tensor:
"""Given a tensor of codes of shape `[*]`, returns a tensor of shape `[*, D]`,
corresponding to the centroids associated to each code index.
"""
assert (
not codes.dtype.is_floating_point
), f"Codes should be integers, got {codes.dtype}"
quantized = F.embedding(codes, self.embedding)
return quantized
def forward(
self, x: torch.Tensor, initialize: bool = True
) -> _CodebookForwardResult:
shape = x.shape
x = self._reshape_input(x)
flat_codes = self._quantize(x)
codes = self._reshape_codes(flat_codes, shape)
quantized = self.decode(codes)
metrics: tp.Dict[str, torch.Tensor] = {}
return _CodebookForwardResult(quantized, codes, metrics)
class VectorQuantization(nn.Module):
"""Vector quantization implementation.
Currently supports only euclidean distance.
Args:
dim (int): Dimension
codebook_size (int): Codebook size
codebook_dim (int): Codebook dimension. If not defined, uses the specified dimension in dim.
decay (float): Decay for exponential moving average over the codebooks.
epsilon (float): Epsilon value for numerical stability.
threshold_usage_ratio (float): Defines the threshold for the cluster usage under which a centroid
is replaced. This is expressed as a fraction of the usage a centroid would get under
a uniform distribution, so that it doesn't depend on the batch size etc.
replaced_usage_ratio (float): When replacing a centroid, use this as an initial centroid usage,
to avoid the centroid getting replaced too quickly.
check_unused_every (int): Check for unused centroids every `check_unused_every` iterations.
This is to avoid too many synchronization points.
"""
def __init__(
self,
dim: int,
codebook_size: int,
codebook_dim: tp.Optional[int] = None,
decay: float = 0.99,
epsilon: float = 1e-5,
threshold_usage_ratio: float = 0.1,
**kwargs,
):
super().__init__()
if codebook_dim is None:
codebook_dim = dim
requires_projection = codebook_dim != dim
self.project_in = (
nn.Linear(dim, codebook_dim) if requires_projection else nn.Identity()
)
self.project_out = (
nn.Linear(codebook_dim, dim) if requires_projection else nn.Identity()
)
self.epsilon = epsilon
self._codebook = EuclideanCodebook(
dim=codebook_dim,
codebook_size=codebook_size,
decay=decay,
epsilon=epsilon,
threshold_usage_ratio=threshold_usage_ratio,
**kwargs,
)
self.codebook_size = codebook_size
@property
def embedding(self):
return self._codebook.embedding
def _rearrange_input(self, x):
x = rearrange(x, "b d n -> b n d")
return x
def _rearrange_output(self, quantized):
quantized = rearrange(quantized, "b n d -> b d n")
return quantized
def encode(self, x: torch.Tensor) -> torch.Tensor:
"""Encodes `x` into discrete integer codes."""
x = self._rearrange_input(x)
x = self.project_in(x)
codes = self._codebook.encode(x)
return codes
def decode(self, codes: torch.Tensor) -> torch.Tensor:
"""Converts integer codes into quantized vectors."""
quantized = self._codebook.decode(codes)
quantized = self.project_out(quantized)
quantized = self._rearrange_output(quantized)
return quantized
def forward(self, x: torch.Tensor, initialize: bool = True) -> _VQForwardResult:
x = self._rearrange_input(x)
quantized, codes, metrics = self._codebook(x, initialize=initialize)
loss = zero_scalar(x.device)
quantized = self.project_out(quantized)
quantized = self._rearrange_output(quantized)
return _VQForwardResult(quantized, codes, loss, metrics)
class ResidualVectorQuantization(nn.Module):
"""Residual vector quantization implementation.
Follows Algorithm 1. in https://arxiv.org/pdf/2107.03312.pdf
"""
def __init__(self, *, num_quantizers: int, codebook_offset: int, **kwargs):
super().__init__()
self.layers = nn.ModuleList(
[VectorQuantization(**kwargs) for _ in range(num_quantizers)]
)
self.codebook_offset = codebook_offset
def forward(
self, x: torch.Tensor, n_q: tp.Optional[int] = None
) -> _VQForwardResult:
"""
Args:
x (torch.Tensor): input tensor to quantize, of shape `[B, C, T]`.
n_q (int or None): if provided, number of codebook levels to use in RVQ.
"""
quantized_out = zero_scalar(x.device)
residual = x
all_losses = []
all_codes = []
all_metrics: tp.Dict[str, torch.Tensor] = {}
n_q = n_q or len(self.layers)
previous_layer_is_initialized = True
for i, layer in enumerate(self.layers[:n_q]): # type: ignore
quantized, codes, loss, metrics = layer(
residual, initialize=previous_layer_is_initialized
)
quantized = quantized.detach()
residual = residual - quantized
quantized_out = quantized_out + quantized
all_codes.append(codes)
all_losses.append(loss)
for key, value in metrics.items():
if key in all_metrics:
all_metrics[key] += value / n_q
else:
all_metrics[key] = value / n_q
all_metrics[key + f"_{i + self.codebook_offset}"] = value
out_losses, out_codes = map(torch.stack, (all_losses, all_codes))
return _VQForwardResult(quantized_out, out_codes, out_losses, all_metrics)
def encode(self, x: torch.Tensor, n_q: tp.Optional[int] = None) -> torch.Tensor:
"""Encodes `x` into discrete integer codes. If `n_q` is provided, only uses the first `n_q` codebook levels."""
residual = x
all_indices = []
n_q = n_q or len(self.layers)
for layer in self.layers[:n_q]: # type: ignore
indices = layer.encode(residual)
quantized = layer.decode(indices)
residual = residual - quantized
all_indices.append(indices)
out_indices = torch.stack(all_indices)
return out_indices
def decode(self, codes: torch.Tensor) -> torch.Tensor:
"""Converts the integer codes into quantized vectors."""
quantized = zero_scalar(codes.device)
for idx, layer_codes in enumerate(codes):
layer = self.layers[idx]
quantized = quantized + layer.decode(layer_codes)
return quantized