File size: 14,546 Bytes
22d5f88
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
# Copyright (c) Kyutai, all rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.

# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.

import math
import typing as tp

import torch

from .base import BaseQuantizer, QuantizedResult
from .core_vq import ResidualVectorQuantization


class ResidualVectorQuantizer(BaseQuantizer):
    """Residual Vector Quantizer.

    Args:
        dimension (int): Dimension of the codebooks.
        input_dimension (None or int): dimension of the input, defaults to `dimension` if not provided.
        output_dimension (None or int): dimension of the output, defaults to `dimension` if not provided.
        n_q (int): Number of vector quantizers used.
        q_dropout (bool): Random quantizer drop out at train time.
        no_quantization_rate (float): Gives the probability of applying no quantization at all
            at train time. The RVQ codebooks will still get the input value to learn the proper codebook.
        bins (int): Codebook size.
        decay (float): Decay for exponential moving average over the codebooks.
        threshold_usage_ratio (float): Defines the threshold for the cluster usage under which a centroid
            is replaced. This is expressed as a fraction of the usage a centroid would get under
            a uniform distribution, so that it doesn't depend on the batch size etc.
        replaced_usage_ratio (float): When replacing a centroid, use this as an initial centroid usage,
            to avoid the centroid getting replaced too quickly.
        codebook_offset (int): Offset to use for the codebook indices. This is useful when using multiple quantizers
            such as in SplitResidualVectorQuantizer.
        force_projection (bool): Whether to force input and output projections even when dimension is constant.
        generator_seed (int or None): seed used to initialize the RNG used for no quantization.
    """

    def __init__(
        self,
        dimension: int = 128,
        input_dimension: tp.Optional[int] = None,
        output_dimension: tp.Optional[int] = None,
        n_q: int = 8,
        q_dropout: bool = False,
        q_first_only_proba: float = 0.0,
        no_quantization_rate: float = 0.0,
        bins: int = 1024,
        decay: float = 0.99,
        threshold_usage_ratio: float = 0.1,
        replaced_usage_ratio: float = 1.0,
        codebook_offset: int = 0,
        force_projection: bool = False,
        generator_seed: tp.Optional[int] = None,
    ):
        super().__init__()
        self.max_n_q = n_q
        self.n_q = n_q
        self.q_dropout = q_dropout
        self.no_quantization_rate = no_quantization_rate
        self.q_first_only_proba = q_first_only_proba
        self.dimension = dimension
        self.input_dimension = input_dimension or dimension
        self.output_dimension = output_dimension or dimension
        self.bins = bins
        self.decay = decay
        self.input_proj: torch.nn.Module
        self.output_proj: torch.nn.Module
        self.generator = None
        if generator_seed is not None:
            self.generator = torch.Generator(
                device="cuda" if torch.cuda.is_available() else "cpu"
            )
            self.generator.manual_seed(generator_seed)
        if self.input_dimension == self.dimension and not force_projection:
            self.input_proj = torch.nn.Identity()
        else:
            self.input_proj = torch.nn.Conv1d(
                self.input_dimension, self.dimension, 1, bias=False
            )
        if self.output_dimension == self.dimension and not force_projection:
            self.output_proj = torch.nn.Identity()
        else:
            self.output_proj = torch.nn.Conv1d(
                self.dimension, self.output_dimension, 1, bias=False
            )
        self.vq = ResidualVectorQuantization(
            dim=self.dimension,
            codebook_size=self.bins,
            num_quantizers=self.n_q,
            decay=self.decay,
            threshold_usage_ratio=threshold_usage_ratio,
            replaced_usage_ratio=replaced_usage_ratio,
            codebook_offset=codebook_offset,
        )

    def forward(self, x: torch.Tensor, frame_rate: int):
        """
        Args:
            x (torch.Tensor): Input tensor of shape [B, C, T] with `C` number of channels.
            frame_rate (int): frame rate of the input (e.g `T = frame_rate * duration`), used to compute
                the bandwidth.

        Returns:
            QuantizedResult: Quantized result with the following attributes:
                - `x` (torch.Tensor): Quantized tensor of shape [B, C, T].
                - `codes` (torch.Tensor): Quantized codes of shape [B, K, T] with `K` number of codebooks.
                - `bw` (torch.Tensor): Bandwidth of the quantized tensor in kbits per second.
                - `penalty` (torch.Tensor): Commitment loss.
                - `metrics` (dict): RVQ metrics, in particular rate of dead code replacement, and entropy.
        """
        n_q = self.n_q
        x = self.input_proj(x)

        bw_per_q = math.log2(self.bins) * frame_rate / 1000
        quantized, codes, commit_loss, metrics = self.vq(x, n_q=n_q)
        B, _, _ = quantized.shape
        quantized = self.output_proj(quantized)
        codes = codes.transpose(0, 1)
        # codes is [B, K, T], with T frames, K nb of codebooks.
        bw = torch.tensor(n_q * bw_per_q).to(x)
        return QuantizedResult(
            quantized, codes, bw, penalty=torch.mean(commit_loss), metrics=metrics
        )

    def encode(self, x: torch.Tensor) -> torch.Tensor:
        """Encode a given input tensor with the specified frame rate at the given bandwidth.
        The RVQ encode method sets the appropriate number of quantizer to use
        and returns indices for each quantizer.
        """
        n_q = self.n_q
        if x.shape[-1] == 0:
            return torch.empty((x.shape[0], n_q, 0), device=x.device, dtype=torch.int64)

        x = self.input_proj(x)
        codes = self.vq.encode(x, n_q=n_q)
        codes = codes.transpose(0, 1)
        # codes is [B, K, T], with T frames, K nb of codebooks.
        return codes

    def decode(self, codes: torch.Tensor) -> torch.Tensor:
        """Decode the given codes to the quantized representation."""
        # codes is [B, K, T], with T frames, K nb of codebooks, vq.decode expects [K, B, T].
        codes = codes.transpose(0, 1)
        quantized = self.vq.decode(codes)
        quantized = self.output_proj(quantized)
        return quantized

    @property
    def total_codebooks(self):
        return self.max_n_q

    @property
    def num_codebooks(self):
        return self.n_q

    def set_num_codebooks(self, n: int):
        assert n >= 0 and n <= self.max_n_q
        self.n_q = n

    @property
    def cardinality(self) -> int:
        return self.bins


class SplitResidualVectorQuantizer(BaseQuantizer):
    """Residual Vector Quantizer with separate projections for the first quantizer and the rest.

    Args:
        n_q (int): Number of residual vector quantizers used.
        n_semantic_q (int): Number of residual vector quantizers used for the semantic quantizer.
        no_quantization_mode (str): if 'true_skip', when doing no quantization, the input will not go
            through the sub quantizers. If `independent`, independent decisions are taken by
            the semantic and acoustic quantizers. If `same` (the default), the same decision is taken by both.
        **kwargs: Arguments to the constructor of `ResidualVectorQuantizer` that are shared between both.
    """

    def __init__(
        self,
        *,
        n_q: int = 8,
        no_quantization_rate: float = 0.0,
        no_quantization_mode: str = "same",
        n_q_semantic: int = 1,
        **kwargs,
    ):
        super().__init__()
        assert n_q > n_q_semantic, (
            f"Number of quantizers {n_q} must be larger "
            f"than the number of semantic quantizers {n_q_semantic}."
        )
        self.max_n_q = n_q
        self.n_q_semantic = n_q_semantic
        self.n_q_acoustic = n_q - n_q_semantic
        if no_quantization_mode == "true_skip":
            self.no_quantization_rate = no_quantization_rate
            # Setting to zero for the underlying RVQ.
            no_quantization_rate = 0.0
        else:
            self.no_quantization_rate = 0.0
        if no_quantization_mode == "same":
            kwargs["generator_seed"] = 1234
        kwargs["no_quantization_rate"] = no_quantization_rate
        q_dropout = kwargs.pop("q_dropout", False)
        self.rvq_first = ResidualVectorQuantizer(
            n_q=n_q_semantic, force_projection=True, q_dropout=False, **kwargs
        )
        self.rvq_rest = ResidualVectorQuantizer(
            n_q=n_q - n_q_semantic,
            codebook_offset=1,
            force_projection=True,
            q_dropout=q_dropout,
            **kwargs,
        )
        if no_quantization_mode == "true_skip":
            assert self.rvq_first.input_dimension == self.rvq_first.output_dimension
            assert self.rvq_rest.input_dimension == self.rvq_rest.output_dimension

    def _renorm_and_add(
        self,
        first_val: torch.Tensor,
        rest_val: torch.Tensor,
        n_q_semantic: int,
        n_q_acoustic: int,
    ):
        """Renormalizes values from `rvq_first` and `rvq_rest` and adds them.

        This allows correcting statistics that are normalized by the number of quantizers. To renormalize, we use the
        number of quantizers that are actually used, e.g. taking into account quantizer dropout.
        """
        n_q = n_q_semantic + n_q_acoustic
        renorm_first_val = first_val * n_q_semantic / n_q
        renorm_rest_val = rest_val * n_q_acoustic / n_q
        return renorm_first_val + renorm_rest_val

    def forward(self, x: torch.Tensor, frame_rate: int):
        """
        Args:
            x (torch.Tensor): Input tensor of shape [B, C, T] with `C` number of channels.
            frame_rate (int): frame rate of the input (e.g `T = frame_rate * duration`), used to compute
                the bandwidth.

        Returns:
            QuantizedResult: Quantized result with the following attributes:
                - `x` (torch.Tensor): Quantized tensor of shape [B, C, T].
                - `codes` (torch.Tensor): Quantized codes of shape [B, K, T] with `K` number of codebooks.
                - `bw` (torch.Tensor): Bandwidth of the quantized tensor in kbits per second.
                - `penalty` (torch.Tensor): Commitment loss.
                - `metrics` (dict): RVQ metrics, in particular rate of dead code replacement, and entropy.
        """
        semantic_result = self.rvq_first(x, frame_rate)
        if self.n_q == self.n_q_semantic:
            return semantic_result
        acoustic_result = self.rvq_rest(x, frame_rate)
        full_quantized_emb = semantic_result.x + acoustic_result.x
        full_quantized_codes = torch.cat(
            [semantic_result.codes, acoustic_result.codes], dim=1
        )
        # This is the actual number of quantizers used,  e.g. taking into account quantizer dropout.
        n_q_semantic = semantic_result.codes.shape[1]
        n_q_acoustic = acoustic_result.codes.shape[1]
        full_quantized_bandwidth = semantic_result.bandwidth + acoustic_result.bandwidth
        full_quantized_penalty = self._renorm_and_add(
            semantic_result.penalty, acoustic_result.penalty, n_q_semantic, n_q_acoustic
        )
        full_quantized_metrics = semantic_result.metrics
        for key, value in acoustic_result.metrics.items():
            if key in full_quantized_metrics:
                full_quantized_metrics[key] = self._renorm_and_add(
                    full_quantized_metrics[key], value, n_q_semantic, n_q_acoustic
                )
            else:
                full_quantized_metrics[key] = value
        return QuantizedResult(
            full_quantized_emb,
            full_quantized_codes,
            full_quantized_bandwidth,
            penalty=full_quantized_penalty,
            metrics=full_quantized_metrics,
        )

    def encode(self, x: torch.Tensor) -> torch.Tensor:
        """Encode a given input tensor with the specified frame rate at the given bandwidth.
        The RVQ encode method sets the appropriate number of quantizer to use
        and returns indices for each quantizer.
        """
        codes = self.rvq_first.encode(x)
        if self.n_q > self.n_q_semantic:
            acoustic_codes = self.rvq_rest.encode(x)
            codes = torch.cat([codes, acoustic_codes], dim=1)
        # codes is [B, K, T], with T frames, K nb of codebooks.
        return codes

    def decode(self, codes: torch.Tensor) -> torch.Tensor:
        """Decode the given codes to the quantized representation."""
        # codes is [B, K, T], with T frames, K nb of codebooks.
        quantized = self.rvq_first.decode(codes[:, : self.n_q_semantic])
        if codes.shape[1] > self.n_q_semantic:
            quantized += self.rvq_rest.decode(codes[:, self.n_q_semantic :])
        return quantized

    @property
    def total_codebooks(self):
        return self.rvq_first.max_n_q + self.rvq_rest.max_n_q

    @property
    def num_codebooks(self):
        return self.rvq_first.num_codebooks + self.rvq_rest.num_codebooks

    @property
    def n_q(self):
        return self.rvq_first.n_q + self.rvq_rest.n_q

    @property
    def dimension(self):
        return self.rvq_first.dimension

    @property
    def semantic_quantizer(self) -> ResidualVectorQuantizer:
        """This returns the quantizer that models the first level of the hierarchy (typically semantic)."""
        return self.rvq_first

    @property
    def acoustic_quantizer(self) -> ResidualVectorQuantizer:
        """This returns the quantizer that models the higher levels of the hierarchy (typically acoustic)."""
        return self.rvq_rest

    def set_num_codebooks(self, n: int):
        assert n >= self.n_q_semantic and n <= self.total_codebooks
        self.rvq_rest.set_num_codebooks(n - self.n_q_semantic)

    @property
    def cardinality(self) -> int:
        assert self.rvq_rest.cardinality == self.rvq_first.cardinality
        return self.rvq_first.cardinality