File size: 3,482 Bytes
22d5f88
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
from fastapi import FastAPI, HTTPException
import numpy as np
import torch
from pydantic import BaseModel
import base64
import io
import os
import logging
from pathlib import Path
from inference import InferenceRecipe
from fastapi.middleware.cors import CORSMiddleware

logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

app = FastAPI()

# Add CORS middleware
app.add_middleware(
    CORSMiddleware,
    allow_origins=["*"],
    allow_credentials=True,
    allow_methods=["*"],
    allow_headers=["*"],
)

class AudioRequest(BaseModel):
    audio_data: str
    sample_rate: int

class AudioResponse(BaseModel):
    audio_data: str
    text: str = ""

# Model initialization status
INITIALIZATION_STATUS = {
    "model_loaded": False,
    "error": None
}

# Global model instance
model = None

def initialize_model():
    """Initialize the model from mounted directory"""
    global model, INITIALIZATION_STATUS
    try:
        device = "cuda" if torch.cuda.is_available() else "cpu"
        logger.info(f"Initializing model on device: {device}")
        
        model_path = os.getenv("MODEL_PATH", "/app/models")
        if not os.path.exists(model_path):
            raise RuntimeError(f"Model path {model_path} does not exist")

        model = InferenceRecipe(model_path, device=device)
        INITIALIZATION_STATUS["model_loaded"] = True
        logger.info("Model initialized successfully")
        return True
    except Exception as e:
        INITIALIZATION_STATUS["error"] = str(e)
        logger.error(f"Failed to initialize model: {e}")
        return False

@app.on_event("startup")
async def startup_event():
    """Initialize model on startup"""
    initialize_model()

@app.get("/api/v1/health")
def health_check():
    """Health check endpoint"""
    status = {
        "status": "healthy" if INITIALIZATION_STATUS["model_loaded"] else "initializing",
        "gpu_available": torch.cuda.is_available(),
        "initialization_status": INITIALIZATION_STATUS
    }
    
    if model is not None:
        status.update({
            "device": str(model.device),
            "model_path": str(model.model_path),
            "mimi_loaded": model.mimi is not None,
            "tokenizer_loaded": model.text_tokenizer is not None,
            "lm_loaded": model.lm_gen is not None
        })
        
    return status

@app.post("/api/v1/inference")
async def inference(request: AudioRequest) -> AudioResponse:
    """Run inference on audio input"""
    if not INITIALIZATION_STATUS["model_loaded"]:
        raise HTTPException(
            status_code=503,
            detail=f"Model not ready. Status: {INITIALIZATION_STATUS}"
        )
        
    try:
        # Decode audio from base64
        audio_bytes = base64.b64decode(request.audio_data) 
        audio_array = np.load(io.BytesIO(audio_bytes))
        
        # Run inference
        result = model.inference(audio_array, request.sample_rate)
        
        # Encode output audio
        buffer = io.BytesIO()
        np.save(buffer, result['audio'])
        audio_b64 = base64.b64encode(buffer.getvalue()).decode()
        
        return AudioResponse(
            audio_data=audio_b64,
            text=result.get("text", "")
        )
    except Exception as e:
        logger.error(f"Inference failed: {str(e)}")
        raise HTTPException(status_code=500, detail=str(e))

if __name__ == "__main__":
    import uvicorn
    uvicorn.run(app, host="0.0.0.0", port=8000)