Commit
·
3d23083
1
Parent(s):
6ae0010
End of training
Browse files
README.md
CHANGED
@@ -22,7 +22,7 @@ model-index:
|
|
22 |
metrics:
|
23 |
- name: Rouge1
|
24 |
type: rouge
|
25 |
-
value: 47.
|
26 |
---
|
27 |
|
28 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -33,10 +33,10 @@ should probably proofread and complete it, then remove this comment. -->
|
|
33 |
This model is a fine-tuned version of [google/flan-t5-base](https://huggingface.co/google/flan-t5-base) on the samsum dataset.
|
34 |
It achieves the following results on the evaluation set:
|
35 |
- Loss: 1.3859
|
36 |
-
- Rouge1: 47.
|
37 |
-
- Rouge2: 23.
|
38 |
-
- Rougel: 39.
|
39 |
-
- Rougelsum: 43.
|
40 |
- Gen Len: 17.3333
|
41 |
|
42 |
## Model description
|
@@ -68,30 +68,30 @@ The following hyperparameters were used during training:
|
|
68 |
|
69 |
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|
70 |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:|
|
71 |
-
| 1.5121 | 0.08 | 50 | 1.4287 | 46.
|
72 |
-
| 1.46 | 0.16 | 100 | 1.4199 | 46.
|
73 |
-
| 1.4515 | 0.24 | 150 | 1.4147 | 46.
|
74 |
-
| 1.4679 | 0.33 | 200 | 1.4121 | 46.
|
75 |
-
| 1.451 | 0.41 | 250 | 1.4109 | 46.
|
76 |
-
| 1.4434 | 0.49 | 300 | 1.4040 | 46.
|
77 |
-
| 1.4417 | 0.57 | 350 | 1.4007 | 46.
|
78 |
-
| 1.4781 | 0.65 | 400 | 1.3952 | 46.
|
79 |
-
| 1.4626 | 0.73 | 450 | 1.3940 | 47.
|
80 |
-
| 1.4307 | 0.81 | 500 | 1.3955 | 46.
|
81 |
-
| 1.4586 | 0.9 | 550 | 1.3933 | 46.
|
82 |
-
| 1.4465 | 0.98 | 600 | 1.3905 | 46.
|
83 |
-
| 1.381 | 1.06 | 650 | 1.3953 | 46.
|
84 |
-
| 1.4125 | 1.14 | 700 | 1.3922 | 46.
|
85 |
-
| 1.3667 | 1.22 | 750 | 1.3922 | 47.
|
86 |
-
| 1.3878 | 1.3 | 800 | 1.3953 | 46.
|
87 |
-
| 1.3884 | 1.38 | 850 | 1.3931 | 46.
|
88 |
-
| 1.3766 | 1.47 | 900 | 1.3898 | 46.
|
89 |
-
| 1.3727 | 1.55 | 950 | 1.3889 | 46.
|
90 |
-
| 1.4001 | 1.63 | 1000 | 1.3859 | 47.
|
91 |
-
| 1.3894 | 1.71 | 1050 | 1.3874 | 47.
|
92 |
-
| 1.3697 | 1.79 | 1100 | 1.3860 | 47.
|
93 |
-
| 1.3886 | 1.87 | 1150 | 1.3862 | 47.
|
94 |
-
| 1.4037 | 1.95 | 1200 | 1.3861 | 47.
|
95 |
|
96 |
|
97 |
### Framework versions
|
|
|
22 |
metrics:
|
23 |
- name: Rouge1
|
24 |
type: rouge
|
25 |
+
value: 47.0919
|
26 |
---
|
27 |
|
28 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
33 |
This model is a fine-tuned version of [google/flan-t5-base](https://huggingface.co/google/flan-t5-base) on the samsum dataset.
|
34 |
It achieves the following results on the evaluation set:
|
35 |
- Loss: 1.3859
|
36 |
+
- Rouge1: 47.0919
|
37 |
+
- Rouge2: 23.2123
|
38 |
+
- Rougel: 39.2407
|
39 |
+
- Rougelsum: 43.2174
|
40 |
- Gen Len: 17.3333
|
41 |
|
42 |
## Model description
|
|
|
68 |
|
69 |
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|
70 |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:|
|
71 |
+
| 1.5121 | 0.08 | 50 | 1.4287 | 46.7806 | 22.8207 | 38.9302 | 42.7835 | 16.9634 |
|
72 |
+
| 1.46 | 0.16 | 100 | 1.4199 | 46.826 | 22.7844 | 39.0295 | 42.8573 | 17.2393 |
|
73 |
+
| 1.4515 | 0.24 | 150 | 1.4147 | 46.6646 | 22.9602 | 38.9391 | 42.8187 | 17.1245 |
|
74 |
+
| 1.4679 | 0.33 | 200 | 1.4121 | 46.8291 | 22.7922 | 39.1404 | 43.1542 | 17.3431 |
|
75 |
+
| 1.451 | 0.41 | 250 | 1.4109 | 46.8103 | 23.0066 | 39.2832 | 43.2411 | 17.2686 |
|
76 |
+
| 1.4434 | 0.49 | 300 | 1.4040 | 46.6321 | 22.989 | 39.3016 | 43.0997 | 16.9158 |
|
77 |
+
| 1.4417 | 0.57 | 350 | 1.4007 | 46.8538 | 22.9937 | 39.2135 | 43.1728 | 17.1172 |
|
78 |
+
| 1.4781 | 0.65 | 400 | 1.3952 | 46.8055 | 23.036 | 39.2961 | 43.1755 | 17.2076 |
|
79 |
+
| 1.4626 | 0.73 | 450 | 1.3940 | 47.0996 | 23.2205 | 39.3007 | 43.2286 | 17.2222 |
|
80 |
+
| 1.4307 | 0.81 | 500 | 1.3955 | 46.8877 | 23.1402 | 39.2634 | 43.1279 | 17.2002 |
|
81 |
+
| 1.4586 | 0.9 | 550 | 1.3933 | 46.7191 | 23.1291 | 39.2437 | 43.1183 | 17.3040 |
|
82 |
+
| 1.4465 | 0.98 | 600 | 1.3905 | 46.8651 | 23.29 | 39.2514 | 43.2025 | 17.3468 |
|
83 |
+
| 1.381 | 1.06 | 650 | 1.3953 | 46.9166 | 22.9547 | 39.0439 | 43.1589 | 17.4066 |
|
84 |
+
| 1.4125 | 1.14 | 700 | 1.3922 | 46.5286 | 23.0552 | 38.9056 | 42.9298 | 17.2381 |
|
85 |
+
| 1.3667 | 1.22 | 750 | 1.3922 | 47.3239 | 23.3549 | 39.4725 | 43.518 | 17.2930 |
|
86 |
+
| 1.3878 | 1.3 | 800 | 1.3953 | 46.6837 | 23.1602 | 39.2578 | 43.2195 | 17.3358 |
|
87 |
+
| 1.3884 | 1.38 | 850 | 1.3931 | 46.9537 | 23.0894 | 39.1676 | 43.1687 | 17.3614 |
|
88 |
+
| 1.3766 | 1.47 | 900 | 1.3898 | 46.9996 | 23.1407 | 39.2222 | 43.237 | 17.3333 |
|
89 |
+
| 1.3727 | 1.55 | 950 | 1.3889 | 46.6936 | 23.0454 | 39.0579 | 42.9472 | 17.3211 |
|
90 |
+
| 1.4001 | 1.63 | 1000 | 1.3859 | 47.0919 | 23.2123 | 39.2407 | 43.2174 | 17.3333 |
|
91 |
+
| 1.3894 | 1.71 | 1050 | 1.3874 | 47.2229 | 23.35 | 39.4333 | 43.4876 | 17.3297 |
|
92 |
+
| 1.3697 | 1.79 | 1100 | 1.3860 | 47.0872 | 23.3503 | 39.3371 | 43.3444 | 17.3504 |
|
93 |
+
| 1.3886 | 1.87 | 1150 | 1.3862 | 47.0516 | 23.3487 | 39.3653 | 43.3272 | 17.3260 |
|
94 |
+
| 1.4037 | 1.95 | 1200 | 1.3861 | 47.05 | 23.3672 | 39.3131 | 43.3233 | 17.3321 |
|
95 |
|
96 |
|
97 |
### Framework versions
|