Commit
·
4a7e4e0
1
Parent(s):
2633f6b
update metric
Browse files- hoho/vis.py +3 -2
- hoho/wed.py +76 -19
- requirements.txt +3 -1
hoho/vis.py
CHANGED
|
@@ -133,7 +133,8 @@ def create_image_grid(images, target_length=312, num_per_row=2):
|
|
| 133 |
return grid_img
|
| 134 |
|
| 135 |
|
| 136 |
-
import matplotlib
|
|
|
|
| 137 |
def visualize_depth(depth, min_depth=None, max_depth=None, cmap='rainbow'):
|
| 138 |
depth = np.array(depth)
|
| 139 |
|
|
@@ -148,7 +149,7 @@ def visualize_depth(depth, min_depth=None, max_depth=None, cmap='rainbow'):
|
|
| 148 |
depth = np.clip(depth, 0, 1)
|
| 149 |
|
| 150 |
# Use the matplotlib colormap to convert the depth to an RGB image
|
| 151 |
-
cmap =
|
| 152 |
depth_image = (cmap(depth) * 255).astype(np.uint8)
|
| 153 |
|
| 154 |
# Convert the depth image to a PIL image
|
|
|
|
| 133 |
return grid_img
|
| 134 |
|
| 135 |
|
| 136 |
+
import matplotlib.pyplot as plt
|
| 137 |
+
|
| 138 |
def visualize_depth(depth, min_depth=None, max_depth=None, cmap='rainbow'):
|
| 139 |
depth = np.array(depth)
|
| 140 |
|
|
|
|
| 149 |
depth = np.clip(depth, 0, 1)
|
| 150 |
|
| 151 |
# Use the matplotlib colormap to convert the depth to an RGB image
|
| 152 |
+
cmap = plt.get_cmap(cmap)
|
| 153 |
depth_image = (cmap(depth) * 255).astype(np.uint8)
|
| 154 |
|
| 155 |
# Convert the depth image to a PIL image
|
hoho/wed.py
CHANGED
|
@@ -6,40 +6,96 @@ import numpy as np
|
|
| 6 |
def zeromean_normalize(vertices):
|
| 7 |
vertices = np.array(vertices)
|
| 8 |
vertices = vertices - vertices.mean(axis=0)
|
| 9 |
-
vertices = vertices / (1e-6 + np.linalg.norm(vertices, axis=1)[:, None])
|
| 10 |
return vertices
|
| 11 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
|
| 13 |
-
|
|
|
|
| 14 |
pd_vertices = np.array(pd_vertices)
|
| 15 |
gt_vertices = np.array(gt_vertices)
|
| 16 |
-
|
| 17 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
|
| 19 |
pd_edges = np.array(pd_edges)
|
| 20 |
gt_edges = np.array(gt_edges)
|
| 21 |
|
| 22 |
-
# Step 1: Bipartite Matching
|
| 23 |
-
if squared:
|
| 24 |
-
distances = cdist(pd_vertices, gt_vertices, metric='sqeuclidean')
|
| 25 |
-
else:
|
| 26 |
-
distances = cdist(pd_vertices, gt_vertices, metric='euclidean')
|
| 27 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 28 |
row_ind, col_ind = linear_sum_assignment(distances)
|
| 29 |
-
|
| 30 |
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
else:
|
| 34 |
-
translation_costs = cv * np.sum(distances[row_ind, col_ind])
|
| 35 |
|
| 36 |
# Additional: Vertex Deletion
|
| 37 |
unmatched_pd_indices = set(range(len(pd_vertices))) - set(row_ind)
|
| 38 |
-
deletion_costs = cv * len(unmatched_pd_indices)
|
| 39 |
|
| 40 |
# Step 3: Vertex Insertion
|
| 41 |
unmatched_gt_indices = set(range(len(gt_vertices))) - set(col_ind)
|
| 42 |
-
insertion_costs = cv * len(unmatched_gt_indices)
|
| 43 |
|
| 44 |
# Step 4: Edge Deletion and Insertion
|
| 45 |
updated_pd_edges = [(col_ind[np.where(row_ind == edge[0])[0][0]], col_ind[np.where(row_ind == edge[1])[0][0]]) for edge in pd_edges if edge[0] in row_ind and edge[1] in row_ind]
|
|
@@ -61,11 +117,12 @@ def compute_WED(pd_vertices, pd_edges, gt_vertices, gt_edges, cv=1.0, ce=1.0, no
|
|
| 61 |
|
| 62 |
# Step 5: Calculation of WED
|
| 63 |
WED = translation_costs + deletion_costs + insertion_costs + deletion_edge_costs + insertion_edge_costs
|
| 64 |
-
print
|
| 65 |
-
print
|
| 66 |
|
| 67 |
if normalized:
|
| 68 |
total_length_of_gt_edges = np.linalg.norm((gt_vertices[gt_edges[:, 0]] - gt_vertices[gt_edges[:, 1]]), axis=1).sum()
|
| 69 |
WED = WED / total_length_of_gt_edges
|
| 70 |
-
|
|
|
|
| 71 |
return WED
|
|
|
|
| 6 |
def zeromean_normalize(vertices):
|
| 7 |
vertices = np.array(vertices)
|
| 8 |
vertices = vertices - vertices.mean(axis=0)
|
| 9 |
+
vertices = vertices / (1e-6 + np.linalg.norm(vertices, axis=1)[:, None]) # project all verts to sphere (not what we meant)
|
| 10 |
return vertices
|
| 11 |
|
| 12 |
+
def preregister_mean_std(verts_to_transform, target_verts, single_scale=True):
|
| 13 |
+
mu_target = target_verts.mean(axis=0)
|
| 14 |
+
mu_in = verts_to_transform.mean(axis=0)
|
| 15 |
+
std_target = np.std(target_verts, axis=0)
|
| 16 |
+
std_in = np.std(verts_to_transform, axis=0)
|
| 17 |
+
|
| 18 |
+
if np.any(std_in == 0):
|
| 19 |
+
std_in[std_in == 0] = 1
|
| 20 |
+
if np.any(std_target == 0):
|
| 21 |
+
std_target[std_target == 0] = 1
|
| 22 |
+
if np.any(np.isnan(std_in)):
|
| 23 |
+
std_in[np.isnan(std_in)] = 1
|
| 24 |
+
if np.any(np.isnan(std_target)):
|
| 25 |
+
std_target[np.isnan(std_target)] = 1
|
| 26 |
+
|
| 27 |
+
if single_scale:
|
| 28 |
+
std_target = np.linalg.norm(std_target)
|
| 29 |
+
std_in = np.linalg.norm(std_in)
|
| 30 |
+
|
| 31 |
+
transformed_verts = (verts_to_transform - mu_in) / std_in
|
| 32 |
+
transformed_verts = transformed_verts * std_target + mu_target
|
| 33 |
+
|
| 34 |
+
return transformed_verts
|
| 35 |
|
| 36 |
+
|
| 37 |
+
def compute_WED(pd_vertices, pd_edges, gt_vertices, gt_edges, cv=100.0, ce=1.0, normalized=True, prenorm=False, preregister=True, register=True, single_scale=True):
|
| 38 |
pd_vertices = np.array(pd_vertices)
|
| 39 |
gt_vertices = np.array(gt_vertices)
|
| 40 |
+
|
| 41 |
+
# Step 0: Prenormalize / preregister
|
| 42 |
+
if prenorm:
|
| 43 |
+
pd_vertices = zeromean_normalize(pd_vertices)
|
| 44 |
+
gt_vertices = zeromean_normalize(gt_vertices)
|
| 45 |
+
|
| 46 |
+
if preregister:
|
| 47 |
+
pd_vertices = preregister_mean_std(pd_vertices, gt_vertices, single_scale=single_scale)
|
| 48 |
+
|
| 49 |
|
| 50 |
pd_edges = np.array(pd_edges)
|
| 51 |
gt_edges = np.array(gt_edges)
|
| 52 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 53 |
|
| 54 |
+
# Step 0.5: Register
|
| 55 |
+
if register:
|
| 56 |
+
# find the optimal rotation, translation, and scale
|
| 57 |
+
from scipy.spatial.transform import Rotation as R
|
| 58 |
+
from scipy.optimize import minimize
|
| 59 |
+
|
| 60 |
+
def transform(x, pd_vertices):
|
| 61 |
+
# x is a 7-element vector, first 3 elements are the rotation vector, next 3 elements are the translation vector, finally scale
|
| 62 |
+
rotation = R.from_rotvec(x[:3])
|
| 63 |
+
translation = x[3:6]
|
| 64 |
+
scale = x[6]
|
| 65 |
+
return scale * rotation.apply(pd_vertices) + translation
|
| 66 |
+
|
| 67 |
+
def cost_function(x, pd_vertices, gt_vertices):
|
| 68 |
+
pd_vertices_transformed = transform(x, pd_vertices)
|
| 69 |
+
distances = cdist(pd_vertices_transformed, gt_vertices, metric='euclidean')
|
| 70 |
+
row_ind, col_ind = linear_sum_assignment(distances)
|
| 71 |
+
translation_costs = np.sum(distances[row_ind, col_ind])
|
| 72 |
+
|
| 73 |
+
return translation_costs
|
| 74 |
+
|
| 75 |
+
x0 = np.array([0, 0, 0, 0, 0, 0, 1])
|
| 76 |
+
# minimize subject to scale > 1e-6
|
| 77 |
+
# res = minimize(cost_function, x0, args=(pd_vertices, gt_vertices), constraints={'type': 'ineq', 'fun': lambda x: x[6] - 1e-6})
|
| 78 |
+
res = minimize(cost_function, x0, args=(pd_vertices, gt_vertices), bounds=[(-np.pi, np.pi), (-np.pi, np.pi), (-np.pi, np.pi), (-500, 500), (-500, 500), (-500, 500), (0.1, 3)])
|
| 79 |
+
# print("scale:", res.x)
|
| 80 |
+
|
| 81 |
+
pd_vertices = transform(res.x, pd_vertices)
|
| 82 |
+
|
| 83 |
+
|
| 84 |
+
# Step 1: Bipartite Matching
|
| 85 |
+
distances = cdist(pd_vertices, gt_vertices, metric='euclidean')
|
| 86 |
row_ind, col_ind = linear_sum_assignment(distances)
|
| 87 |
+
|
| 88 |
|
| 89 |
+
# Step 2: Vertex Translation
|
| 90 |
+
translation_costs = np.sum(distances[row_ind, col_ind])
|
|
|
|
|
|
|
| 91 |
|
| 92 |
# Additional: Vertex Deletion
|
| 93 |
unmatched_pd_indices = set(range(len(pd_vertices))) - set(row_ind)
|
| 94 |
+
deletion_costs = cv * len(unmatched_pd_indices)
|
| 95 |
|
| 96 |
# Step 3: Vertex Insertion
|
| 97 |
unmatched_gt_indices = set(range(len(gt_vertices))) - set(col_ind)
|
| 98 |
+
insertion_costs = cv * len(unmatched_gt_indices)
|
| 99 |
|
| 100 |
# Step 4: Edge Deletion and Insertion
|
| 101 |
updated_pd_edges = [(col_ind[np.where(row_ind == edge[0])[0][0]], col_ind[np.where(row_ind == edge[1])[0][0]]) for edge in pd_edges if edge[0] in row_ind and edge[1] in row_ind]
|
|
|
|
| 117 |
|
| 118 |
# Step 5: Calculation of WED
|
| 119 |
WED = translation_costs + deletion_costs + insertion_costs + deletion_edge_costs + insertion_edge_costs
|
| 120 |
+
# print("translation_costs, deletion_costs, insertion_costs, deletion_edge_costs, insertion_edge_costs")
|
| 121 |
+
# print(translation_costs, deletion_costs, insertion_costs, deletion_edge_costs, insertion_edge_costs)
|
| 122 |
|
| 123 |
if normalized:
|
| 124 |
total_length_of_gt_edges = np.linalg.norm((gt_vertices[gt_edges[:, 0]] - gt_vertices[gt_edges[:, 1]]), axis=1).sum()
|
| 125 |
WED = WED / total_length_of_gt_edges
|
| 126 |
+
|
| 127 |
+
# print ("Total length", total_length_of_gt_edges)
|
| 128 |
return WED
|
requirements.txt
CHANGED
|
@@ -3,4 +3,6 @@ pillow
|
|
| 3 |
webdataset
|
| 4 |
trimesh
|
| 5 |
scipy
|
| 6 |
-
datasets
|
|
|
|
|
|
|
|
|
| 3 |
webdataset
|
| 4 |
trimesh
|
| 5 |
scipy
|
| 6 |
+
datasets
|
| 7 |
+
ipywidgets
|
| 8 |
+
matplotlib
|