--- license: apache-2.0 tags: - generated_from_trainer datasets: - caner metrics: - precision - recall - f1 - accuracy model-index: - name: bert-finetuned-ner-v4.012 results: - task: name: Token Classification type: token-classification dataset: name: caner type: caner config: default split: train[67%:68%] args: default metrics: - name: Precision type: precision value: 0.7985739750445633 - name: Recall type: recall value: 0.8373831775700935 - name: F1 type: f1 value: 0.8175182481751825 - name: Accuracy type: accuracy value: 0.9538148524923703 --- # bert-finetuned-ner-v4.012 This model is a fine-tuned version of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) on the caner dataset. It achieves the following results on the evaluation set: - Loss: 0.2304 - Precision: 0.7986 - Recall: 0.8374 - F1: 0.8175 - Accuracy: 0.9538 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.2776 | 1.0 | 3228 | 0.3328 | 0.7988 | 0.7720 | 0.7852 | 0.9406 | | 0.1617 | 2.0 | 6456 | 0.2514 | 0.8240 | 0.8224 | 0.8232 | 0.9591 | | 0.1266 | 3.0 | 9684 | 0.2304 | 0.7986 | 0.8374 | 0.8175 | 0.9538 | ### Framework versions - Transformers 4.27.4 - Pytorch 1.13.1+cu116 - Datasets 2.11.0 - Tokenizers 0.13.2