File size: 2,209 Bytes
51698ff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- caner
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: bert-finetuned-ner-v4.001
  results:
  - task:
      name: Token Classification
      type: token-classification
    dataset:
      name: caner
      type: caner
      config: default
      split: train[-1%:]
      args: default
    metrics:
    - name: Precision
      type: precision
      value: 0.8814432989690721
    - name: Recall
      type: recall
      value: 0.8208
    - name: F1
      type: f1
      value: 0.8500414250207124
    - name: Accuracy
      type: accuracy
      value: 0.9327371695178849
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# bert-finetuned-ner-v4.001

This model is a fine-tuned version of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) on the caner dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4995
- Precision: 0.8814
- Recall: 0.8208
- F1: 0.8500
- Accuracy: 0.9327

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Precision | Recall | F1     | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.2518        | 1.0   | 4842  | 0.5403          | 0.8354    | 0.7712 | 0.8020 | 0.9178   |
| 0.1364        | 2.0   | 9684  | 0.4746          | 0.8728    | 0.8016 | 0.8357 | 0.9287   |
| 0.0915        | 3.0   | 14526 | 0.4995          | 0.8814    | 0.8208 | 0.8500 | 0.9327   |


### Framework versions

- Transformers 4.27.4
- Pytorch 1.13.1+cu116
- Datasets 2.11.0
- Tokenizers 0.13.2