--- pipeline_tag: text-generation inference: true widget: - text: 'def print_hello_world():' example_title: Hello world group: Python license: bigcode-openrail-m datasets: - bigcode/the-stack-dedup metrics: - code_eval library_name: transformers tags: - code - TensorBlock - GGUF base_model: bigcode/tiny_starcoder_py model-index: - name: Tiny-StarCoder-Py results: - task: type: text-generation dataset: name: HumanEval type: openai_humaneval metrics: - type: pass@1 value: 7.84% name: pass@1 verified: false ---
TensorBlock
[![Website](https://img.shields.io/badge/Website-tensorblock.co-blue?logo=google-chrome&logoColor=white)](https://tensorblock.co) [![Twitter](https://img.shields.io/twitter/follow/tensorblock_aoi?style=social)](https://twitter.com/tensorblock_aoi) [![Discord](https://img.shields.io/badge/Discord-Join%20Us-5865F2?logo=discord&logoColor=white)](https://discord.gg/Ej5NmeHFf2) [![GitHub](https://img.shields.io/badge/GitHub-TensorBlock-black?logo=github&logoColor=white)](https://github.com/TensorBlock) [![Telegram](https://img.shields.io/badge/Telegram-Group-blue?logo=telegram)](https://t.me/TensorBlock) ## bigcode/tiny_starcoder_py - GGUF This repo contains GGUF format model files for [bigcode/tiny_starcoder_py](https://huggingface.co/bigcode/tiny_starcoder_py). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4011](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d). ## Our projects
Forge
Forge Project
An OpenAI-compatible multi-provider routing layer.
🚀 Try it now! 🚀
Awesome MCP Servers TensorBlock Studio
MCP Servers Studio
A comprehensive collection of Model Context Protocol (MCP) servers. A lightweight, open, and extensible multi-LLM interaction studio.
👀 See what we built 👀 👀 See what we built 👀
## Prompt template ``` ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [tiny_starcoder_py-Q2_K.gguf](https://huggingface.co/tensorblock/tiny_starcoder_py-GGUF/blob/main/tiny_starcoder_py-Q2_K.gguf) | Q2_K | 0.097 GB | smallest, significant quality loss - not recommended for most purposes | | [tiny_starcoder_py-Q3_K_S.gguf](https://huggingface.co/tensorblock/tiny_starcoder_py-GGUF/blob/main/tiny_starcoder_py-Q3_K_S.gguf) | Q3_K_S | 0.103 GB | very small, high quality loss | | [tiny_starcoder_py-Q3_K_M.gguf](https://huggingface.co/tensorblock/tiny_starcoder_py-GGUF/blob/main/tiny_starcoder_py-Q3_K_M.gguf) | Q3_K_M | 0.112 GB | very small, high quality loss | | [tiny_starcoder_py-Q3_K_L.gguf](https://huggingface.co/tensorblock/tiny_starcoder_py-GGUF/blob/main/tiny_starcoder_py-Q3_K_L.gguf) | Q3_K_L | 0.118 GB | small, substantial quality loss | | [tiny_starcoder_py-Q4_0.gguf](https://huggingface.co/tensorblock/tiny_starcoder_py-GGUF/blob/main/tiny_starcoder_py-Q4_0.gguf) | Q4_0 | 0.117 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [tiny_starcoder_py-Q4_K_S.gguf](https://huggingface.co/tensorblock/tiny_starcoder_py-GGUF/blob/main/tiny_starcoder_py-Q4_K_S.gguf) | Q4_K_S | 0.118 GB | small, greater quality loss | | [tiny_starcoder_py-Q4_K_M.gguf](https://huggingface.co/tensorblock/tiny_starcoder_py-GGUF/blob/main/tiny_starcoder_py-Q4_K_M.gguf) | Q4_K_M | 0.125 GB | medium, balanced quality - recommended | | [tiny_starcoder_py-Q5_0.gguf](https://huggingface.co/tensorblock/tiny_starcoder_py-GGUF/blob/main/tiny_starcoder_py-Q5_0.gguf) | Q5_0 | 0.131 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [tiny_starcoder_py-Q5_K_S.gguf](https://huggingface.co/tensorblock/tiny_starcoder_py-GGUF/blob/main/tiny_starcoder_py-Q5_K_S.gguf) | Q5_K_S | 0.131 GB | large, low quality loss - recommended | | [tiny_starcoder_py-Q5_K_M.gguf](https://huggingface.co/tensorblock/tiny_starcoder_py-GGUF/blob/main/tiny_starcoder_py-Q5_K_M.gguf) | Q5_K_M | 0.136 GB | large, very low quality loss - recommended | | [tiny_starcoder_py-Q6_K.gguf](https://huggingface.co/tensorblock/tiny_starcoder_py-GGUF/blob/main/tiny_starcoder_py-Q6_K.gguf) | Q6_K | 0.146 GB | very large, extremely low quality loss | | [tiny_starcoder_py-Q8_0.gguf](https://huggingface.co/tensorblock/tiny_starcoder_py-GGUF/blob/main/tiny_starcoder_py-Q8_0.gguf) | Q8_0 | 0.182 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/tiny_starcoder_py-GGUF --include "tiny_starcoder_py-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/tiny_starcoder_py-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```