coco22 commited on
Commit
1348992
·
verified ·
1 Parent(s): f4c174c

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +7 -28
README.md CHANGED
@@ -12,21 +12,20 @@ license_link: LICENSE
12
  <img src="ad3.jpg" alt="00205_" />
13
  </div>
14
 
15
- Bokeh 3.5 Medium is a **Continue-training** model built upon the **stable diffusion 3.5 medium** foundation, further refined using a **500W high-resolution open-source dataset** with rigorous **aesthetic curation**. This ensures outstanding image quality with **DSLR-level fidelity** for natural images, fine detail preservation, and enhanced controllability.
16
 
17
  This model is released under the Stability Community License.
18
  For more details, visit [Tensor.Art](https://tensor.art) or [TusiArt](https://tusiart.com) to explore additional resources and useful information.
19
 
20
  ## Overview
21
 
22
- - **Continue-training on SD3.5M**, leveraging a large-scale **500W high-resolution dataset**, carefully curated for aesthetic quality.
23
- - **Supports hybrid short/long caption training** for enhanced natural language understanding.
24
- - **Short Captions:** Focus on core image features.
25
- - **Long Captions:** Provide broader scene context and atmospheric details.
26
  - **Recommended Resolutions:**
27
  `1920x1024`, `1728x1152`, `1152x1728`, `1280x1664`, `1440x1440`
28
- - **Best Quality Training Resolution:** `1440x1440`
29
- - **Supports LoRA fine-tuning.**
30
 
31
  ## Advantages
32
 
@@ -61,20 +60,9 @@ For more details, visit [Tensor.Art](https://tensor.art) or [TusiArt](https://tu
61
  - **Main subject** (e.g., `"Close-up of a macaw"`)
62
  - **Detailed features** (e.g., `"vivid feathers, sharp beak"`)
63
  - **Background environment** (e.g., `"dimly lit environment"`)
64
- - **Atmospheric description** (e.g., `"soft warm lighting, cinematic mood"`)
65
-
66
- ### Best Practices:
67
- - **Avoid overly complex prompts**, as the model already has strong text encoding. Overloading details can cause **T5 hallucination artifacts**, reducing image quality.
68
- - **Do not use excessively short prompts** (e.g., single words or 2-3 tokens) unless combined with **LoRA or Image2Image (i2i)** techniques.
69
- - **Avoid mixing too many unrelated concepts**, as this can lead to visual distortions and unwanted artifacts.
70
  - **Optimal token length:** **30-70 tokens**.
71
 
72
- ### Negative Prompting
73
- - **Negative prompts strongly influence image quality.**
74
- - Ensure they **do not contradict the main subject** to avoid degrading the output.
75
-
76
-
77
-
78
  ## Example Output
79
  Using diffusers:
80
  ```python
@@ -106,15 +94,6 @@ For **LoRA fine-tuning**, the following tools and settings are recommended:
106
  - **Kohya_ss:** [GitHub Repository](https://github.com/bmaltais/kohya_ss.git)
107
  - **Simple Tuner:** [GitHub Repository](https://github.com/bghira/SimpleTuner)
108
 
109
- ### ⚙️ Suggested Training Settings
110
- ```bash
111
- --Resolution 1440x1440
112
- --t5xxl_max_token_length 154
113
- --optimizer_type AdamW8bit
114
- --mmdit_lr 1e-4
115
- --text_encoder_lr 5e-5
116
- ```
117
-
118
  ## Contact
119
  * Website: https://tensor.art https://tusiart.com
120
  * Developed by: TensorArt
 
12
  <img src="ad3.jpg" alt="00205_" />
13
  </div>
14
 
15
+ Bokeh 3.5 Medium is based on **Stable Diffusion 3.5 Medium** as its foundation model, using a 5M high-resolution open-source dataset that underwent rigorous quality and **aesthetic screening** for post-training, ensuring **excellent image quality**, **high fidelity of natural images**, preservation of fine **details**, and enhanced **controllability**.
16
 
17
  This model is released under the Stability Community License.
18
  For more details, visit [Tensor.Art](https://tensor.art) or [TusiArt](https://tusiart.com) to explore additional resources and useful information.
19
 
20
  ## Overview
21
 
22
+ - Continued training on **SD3.5M**, utilizing carefully curated high-resolution training data to achieve excellent image quality.
23
+ - Trained with mixed short/long natural language captions.
24
+ - **Short Captions:** Focus on the core subject content of the image.
25
+ - **Long Captions:** Provide broader descriptions of the scene environment and atmosphere.
26
  - **Recommended Resolutions:**
27
  `1920x1024`, `1728x1152`, `1152x1728`, `1280x1664`, `1440x1440`
28
+ - Powerful customized **fine-tuning performance** that can be widely used for **downstream production tasks**.
 
29
 
30
  ## Advantages
31
 
 
60
  - **Main subject** (e.g., `"Close-up of a macaw"`)
61
  - **Detailed features** (e.g., `"vivid feathers, sharp beak"`)
62
  - **Background environment** (e.g., `"dimly lit environment"`)
63
+ - **Atmospheric description** (e.g., `"soft warm lighting, cinematic mood"`)
 
 
 
 
 
64
  - **Optimal token length:** **30-70 tokens**.
65
 
 
 
 
 
 
 
66
  ## Example Output
67
  Using diffusers:
68
  ```python
 
94
  - **Kohya_ss:** [GitHub Repository](https://github.com/bmaltais/kohya_ss.git)
95
  - **Simple Tuner:** [GitHub Repository](https://github.com/bghira/SimpleTuner)
96
 
 
 
 
 
 
 
 
 
 
97
  ## Contact
98
  * Website: https://tensor.art https://tusiart.com
99
  * Developed by: TensorArt