--- license: other license_name: stabilityai-ai-community license_link: LICENSE.md language: - en base_model: - tensorart/bokeh_3.5_medium pipeline_tag: text-to-image ---
**Bokeh_Line_Controlnet**
# Description - Input Image: Black and white line art or images processed with edge detection algorithms - Output Image: Generated images incorporating edge information This enables better control over the main subject features and composition, resulting in more vivid and realistic images. # Example | input | output | Prompt | |:---:|:---:|:---| | | | A cat looks up, close-up, sapphire eyes | | | | heron bird standing, closeup, graceful | | | | a modern build design | | | | A old woman talking | # Use We recommend using ComfyUI for local inference ![input](./comfy.png) # With Bokeh ```python import torch from diffusers import StableDiffusion3ControlNetPipeline from diffusers import SD3ControlNetModel from diffusers.utils import load_image controlnet = SD3ControlNetModel.from_pretrained("tensorart/Bokeh_Depth_Controlnet") pipe = StableDiffusion3ControlNetPipeline.from_pretrained( "tensorart/bokeh_3.5_medium", controlnet=controlnet ) pipe.to("cuda", torch.float16) control_image = load_image("https://huggingface.co/tensorart/Bokeh_Line_Controlnet/resolve/main/images/001_line.png") prompt = "A cat looks up, close-up, sapphire eyes" negative_prompt ="anime,render,cartoon,3d" negative_prompt_3="" image = pipe( prompt, num_inference_steps=30, negative_prompt=negative_prompt, negative_prompt_3=negative_prompt_3, control_image=control_image, height=1728, width=1152, guidance_scale=4, controlnet_conditioning_scale=0.8 ).images[0] image.save('image.jpg') ``` ## Contact * Website: https://tensor.art https://tusiart.com * Developed by: TensorArt * Api: https://tams.tensor.art/