Text Generation
Transformers
Safetensors
English
woodchen7 commited on
Commit
937ac5a
·
verified ·
1 Parent(s): 935089a

Upload configuration_hunyuan.py with huggingface_hub

Browse files
Files changed (1) hide show
  1. configuration_hunyuan.py +192 -0
configuration_hunyuan.py ADDED
@@ -0,0 +1,192 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2024 Tencent Inc. All Rights Reserved.
3
+ """ HunYuan model configuration"""
4
+
5
+ from transformers.configuration_utils import PretrainedConfig
6
+ from transformers.utils import logging
7
+
8
+
9
+ logger = logging.get_logger(__name__)
10
+
11
+
12
+ class HunYuanConfig(PretrainedConfig):
13
+ r"""
14
+ This is the configuration class to store the configuration of a [`HunYuanModel`]. It is used to instantiate an
15
+ HunYuan model according to the specified arguments, defining the model architecture. Instantiating a configuration
16
+ with the defaults will yield a similar configuration to that of the HunYuan-7B.
17
+
18
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
19
+ documentation from [`PretrainedConfig`] for more information.
20
+
21
+
22
+ Args:
23
+ vocab_size (`int`, *optional*, defaults to 32000):
24
+ Vocabulary size of the HunYuan model. Defines the number of different tokens that can be represented by the
25
+ `inputs_ids` passed when calling [`HunYuanModel`]
26
+ hidden_size (`int`, *optional*, defaults to 4096):
27
+ Dimension of the hidden representations.
28
+ intermediate_size (`int`, *optional*, defaults to 11008):
29
+ Dimension of the MLP representations.
30
+ num_hidden_layers (`int`, *optional*, defaults to 32):
31
+ Number of hidden layers in the Transformer decoder.
32
+ num_attention_heads (`int`, *optional*, defaults to 32):
33
+ Number of attention heads for each attention layer in the Transformer decoder.
34
+ num_key_value_heads (`int`, *optional*):
35
+ This is the number of key_value heads that should be used to implement Grouped Query Attention. If
36
+ `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
37
+ `num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
38
+ converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
39
+ by meanpooling all the original heads within that group. For more details checkout [this
40
+ paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
41
+ `num_attention_heads`.
42
+ hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
43
+ The non-linear activation function (function or string) in the decoder.
44
+ max_position_embeddings (`int`, *optional*, defaults to 2048):
45
+ The maximum sequence length that this model might ever be used with.
46
+ initializer_range (`float`, *optional*, defaults to 0.02):
47
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
48
+ rms_norm_eps (`float`, *optional*, defaults to 1e-06):
49
+ The epsilon used by the rms normalization layers.
50
+ use_cache (`bool`, *optional*, defaults to `True`):
51
+ Whether or not the model should return the last key/values attentions (not used by all models). Only
52
+ relevant if `config.is_decoder=True`.
53
+ pad_token_id (`int`, *optional*):
54
+ Padding token id.
55
+ bos_token_id (`int`, *optional*, defaults to 1):
56
+ Beginning of stream token id.
57
+ eos_token_id (`int`, *optional*, defaults to 2):
58
+ End of stream token id.
59
+ pretraining_tp (`int`, *optional*, defaults to 1):
60
+ Experimental feature. Tensor parallelism rank used during pretraining. Please refer to [this
61
+ document](https://huggingface.co/docs/transformers/parallelism) to understand more about it. This value is
62
+ necessary to ensure exact reproducibility of the pretraining results. Please refer to [this
63
+ issue](https://github.com/pytorch/pytorch/issues/76232).
64
+ tie_word_embeddings (`bool`, *optional*, defaults to `False`):
65
+ Whether to tie weight embeddings
66
+ rope_theta (`float`, *optional*, defaults to 10000.0):
67
+ The base period of the RoPE embeddings.
68
+ rope_scaling (`Dict`, *optional*):
69
+ Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling
70
+ strategies: linear and dynamic. Their scaling factor must be a float greater than 1. The expected format is
71
+ `{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update
72
+ `max_position_embeddings` to the expected new maximum. See the following thread for more information on how
73
+ these scaling strategies behave:
74
+ https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/dynamically_scaled_rope_further_increases/. This is an
75
+ experimental feature, subject to breaking API changes in future versions.
76
+ attention_bias (`bool`, defaults to `False`, *optional*, defaults to `False`):
77
+ Whether to use a bias in the query, key, value and output projection layers during self-attention.
78
+ attention_dropout (`float`, *optional*, defaults to 0.0):
79
+ The dropout ratio for the attention probabilities.
80
+ use_qk_norm (`bool`, *optional*, defaults to `False`):
81
+ Whether query and key in attention use norm
82
+ use_cla (`bool`, *optional*, defaults to `False`):
83
+ Whether to use CLA in attention
84
+ cla_share_factor (`int`, *optional*, defaults to 1):
85
+ The share factor of CLA
86
+ """
87
+
88
+ model_type = "hunyuan"
89
+ keys_to_ignore_at_inference = ["past_key_values"]
90
+
91
+ def __init__(
92
+ self,
93
+ vocab_size=290943,
94
+ hidden_size=4096,
95
+ intermediate_size=11008,
96
+ num_hidden_layers=32,
97
+ num_attention_heads=32,
98
+ num_key_value_heads=None,
99
+ hidden_act="silu",
100
+ max_position_embeddings=2048,
101
+ initializer_range=0.02,
102
+ rms_norm_eps=1e-5,
103
+ use_cache=True,
104
+ pad_token_id=0,
105
+ bos_token_id=1,
106
+ eos_token_id=2,
107
+ pretraining_tp=1,
108
+ tie_word_embeddings=False,
109
+ rope_theta=10000.0,
110
+ rope_scaling=None,
111
+ attention_bias=False,
112
+ attention_dropout=0.0,
113
+ use_qk_norm=False,
114
+ use_cla=False,
115
+ cla_share_factor=1,
116
+ num_experts=1,
117
+ use_mixed_mlp_moe=False,
118
+ num_shared_expert=1,
119
+ moe_topk=1,
120
+ capacity_factor=1.0,
121
+ moe_drop_tokens=False,
122
+ moe_random_routing_dropped_token=False,
123
+ **kwargs,
124
+ ):
125
+ self.vocab_size = vocab_size
126
+ self.max_position_embeddings = max_position_embeddings
127
+ self.hidden_size = hidden_size
128
+ self.intermediate_size = intermediate_size
129
+ self.num_hidden_layers = num_hidden_layers
130
+ self.num_attention_heads = num_attention_heads
131
+ self.num_experts = num_experts
132
+ self.use_mixed_mlp_moe = use_mixed_mlp_moe
133
+ self.num_shared_expert = num_shared_expert
134
+ self.moe_topk = moe_topk
135
+ self.capacity_factor = capacity_factor
136
+ self.moe_drop_tokens = moe_drop_tokens
137
+ self.moe_random_routing_dropped_token = moe_random_routing_dropped_token
138
+
139
+ # for backward compatibility
140
+ if num_key_value_heads is None:
141
+ num_key_value_heads = num_attention_heads
142
+
143
+ self.num_key_value_heads = num_key_value_heads
144
+ self.hidden_act = hidden_act
145
+ self.initializer_range = initializer_range
146
+ self.rms_norm_eps = rms_norm_eps
147
+ self.pretraining_tp = pretraining_tp
148
+ self.use_cache = use_cache
149
+ self.rope_theta = rope_theta
150
+ self.rope_scaling = rope_scaling
151
+ # self._rope_scaling_validation() # TODO: Need validation?
152
+ self.attention_bias = attention_bias
153
+ self.attention_dropout = attention_dropout
154
+ self.use_qk_norm = use_qk_norm
155
+ self.use_cla = use_cla
156
+ self.cla_share_factor = cla_share_factor
157
+
158
+ super().__init__(
159
+ pad_token_id=pad_token_id,
160
+ bos_token_id=bos_token_id,
161
+ eos_token_id=eos_token_id,
162
+ tie_word_embeddings=tie_word_embeddings,
163
+ **kwargs,
164
+ )
165
+
166
+ def _rope_scaling_validation(self):
167
+ """
168
+ Validate the `rope_scaling` configuration.
169
+ """
170
+ if self.rope_scaling is None:
171
+ return
172
+
173
+ if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 2:
174
+ raise ValueError(
175
+ "`rope_scaling` must be a dictionary with with two fields, `type` and `factor` or `type` and `alpha`, "
176
+ f"got {self.rope_scaling}"
177
+ )
178
+ rope_scaling_type = self.rope_scaling.get("type", None)
179
+ rope_scaling_factor = self.rope_scaling.get("factor", None)
180
+ rope_scaling_alpha = self.rope_scaling.get("alpha", None)
181
+ if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]:
182
+ raise ValueError(
183
+ f"`rope_scaling`'s type field must be one of ['linear', 'dynamic'], got {rope_scaling_type}"
184
+ )
185
+ if rope_scaling_factor is None and rope_scaling_alpha is None:
186
+ raise ValueError("`rope_scaling`'s factor or alpha field must be have one, got both of none")
187
+ if rope_scaling_factor is not None:
188
+ if not isinstance(rope_scaling_factor, float) or rope_scaling_factor <= 1.0:
189
+ raise ValueError(f"`rope_scaling`'s factor field must be a float > 1.0, got {rope_scaling_factor}")
190
+ if rope_scaling_alpha is not None:
191
+ if not isinstance(rope_scaling_alpha, float) or rope_scaling_alpha <= 1.0:
192
+ raise ValueError(f"`rope_scaling`'s alpha field must be a float > 1.0, got {rope_scaling_alpha}")