Image-to-3D
Hunyuan3D-2
Diffusers
Safetensors
English
Chinese
text-to-3d
Huiwenshi's picture
Upload folder using huggingface_hub
42f2cb6 verified
import os
import json
from typing import Any, Dict, Optional
from diffusers.models import UNet2DConditionModel
import numpy
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.checkpoint
import torch.distributed
from PIL import Image
from einops import rearrange
from typing import Any, Callable, Dict, List, Optional, Union, Tuple
import diffusers
from diffusers import (
AutoencoderKL,
DDPMScheduler,
DiffusionPipeline,
EulerAncestralDiscreteScheduler,
UNet2DConditionModel,
ImagePipelineOutput
)
from diffusers.image_processor import VaeImageProcessor
from diffusers.models.attention_processor import Attention, AttnProcessor, XFormersAttnProcessor, AttnProcessor2_0
from diffusers.utils.import_utils import is_xformers_available
from diffusers.utils import deprecate
from diffusers.models.transformers.transformer_2d import BasicTransformerBlock
def _chunked_feed_forward(ff: nn.Module, hidden_states: torch.Tensor, chunk_dim: int, chunk_size: int):
# "feed_forward_chunk_size" can be used to save memory
if hidden_states.shape[chunk_dim] % chunk_size != 0:
raise ValueError(
f"`hidden_states` dimension to be chunked: {hidden_states.shape[chunk_dim]} has to be divisible by chunk size: {chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`."
)
num_chunks = hidden_states.shape[chunk_dim] // chunk_size
ff_output = torch.cat(
[ff(hid_slice) for hid_slice in hidden_states.chunk(num_chunks, dim=chunk_dim)],
dim=chunk_dim,
)
return ff_output
class Basic2p5DTransformerBlock(torch.nn.Module):
def __init__(self, transformer: BasicTransformerBlock, layer_name, use_ma=True, use_ra=True) -> None:
super().__init__()
self.transformer = transformer
self.layer_name = layer_name
self.use_ma = use_ma
self.use_ra = use_ra
# multiview attn
if self.use_ma:
self.attn_multiview = Attention(
query_dim=self.dim,
heads=self.num_attention_heads,
dim_head=self.attention_head_dim,
dropout=self.dropout,
bias=self.attention_bias,
cross_attention_dim=None,
upcast_attention=self.attn1.upcast_attention,
out_bias=True,
)
# ref attn
if self.use_ra:
self.attn_refview = Attention(
query_dim=self.dim,
heads=self.num_attention_heads,
dim_head=self.attention_head_dim,
dropout=self.dropout,
bias=self.attention_bias,
cross_attention_dim=None,
upcast_attention=self.attn1.upcast_attention,
out_bias=True,
)
def __getattr__(self, name: str):
try:
return super().__getattr__(name)
except AttributeError:
return getattr(self.transformer, name)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
encoder_hidden_states: Optional[torch.Tensor] = None,
encoder_attention_mask: Optional[torch.Tensor] = None,
timestep: Optional[torch.LongTensor] = None,
cross_attention_kwargs: Dict[str, Any] = None,
class_labels: Optional[torch.LongTensor] = None,
added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None,
) -> torch.Tensor:
# Notice that normalization is always applied before the real computation in the following blocks.
# 0. Self-Attention
batch_size = hidden_states.shape[0]
cross_attention_kwargs = cross_attention_kwargs.copy() if cross_attention_kwargs is not None else {}
num_in_batch = cross_attention_kwargs.pop('num_in_batch', 1)
mode = cross_attention_kwargs.pop('mode', None)
mva_scale = cross_attention_kwargs.pop('mva_scale', 1.0)
ref_scale = cross_attention_kwargs.pop('ref_scale', 1.0)
condition_embed_dict = cross_attention_kwargs.pop("condition_embed_dict", None)
if self.norm_type == "ada_norm":
norm_hidden_states = self.norm1(hidden_states, timestep)
elif self.norm_type == "ada_norm_zero":
norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(
hidden_states, timestep, class_labels, hidden_dtype=hidden_states.dtype
)
elif self.norm_type in ["layer_norm", "layer_norm_i2vgen"]:
norm_hidden_states = self.norm1(hidden_states)
elif self.norm_type == "ada_norm_continuous":
norm_hidden_states = self.norm1(hidden_states, added_cond_kwargs["pooled_text_emb"])
elif self.norm_type == "ada_norm_single":
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = (
self.scale_shift_table[None] + timestep.reshape(batch_size, 6, -1)
).chunk(6, dim=1)
norm_hidden_states = self.norm1(hidden_states)
norm_hidden_states = norm_hidden_states * (1 + scale_msa) + shift_msa
else:
raise ValueError("Incorrect norm used")
if self.pos_embed is not None:
norm_hidden_states = self.pos_embed(norm_hidden_states)
# 1. Prepare GLIGEN inputs
cross_attention_kwargs = cross_attention_kwargs.copy() if cross_attention_kwargs is not None else {}
gligen_kwargs = cross_attention_kwargs.pop("gligen", None)
attn_output = self.attn1(
norm_hidden_states,
encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None,
attention_mask=attention_mask,
**cross_attention_kwargs,
)
if self.norm_type == "ada_norm_zero":
attn_output = gate_msa.unsqueeze(1) * attn_output
elif self.norm_type == "ada_norm_single":
attn_output = gate_msa * attn_output
hidden_states = attn_output + hidden_states
if hidden_states.ndim == 4:
hidden_states = hidden_states.squeeze(1)
# 1.2 Reference Attention
if 'w' in mode:
condition_embed_dict[self.layer_name] = rearrange(norm_hidden_states, '(b n) l c -> b (n l) c', n=num_in_batch) # B, (N L), C
if 'r' in mode and self.use_ra:
condition_embed = condition_embed_dict[self.layer_name].unsqueeze(1).repeat(1,num_in_batch,1,1) # B N L C
condition_embed = rearrange(condition_embed, 'b n l c -> (b n) l c')
attn_output = self.attn_refview(
norm_hidden_states,
encoder_hidden_states=condition_embed,
attention_mask=None,
**cross_attention_kwargs
)
ref_scale_timing = ref_scale
if isinstance(ref_scale, torch.Tensor):
ref_scale_timing = ref_scale.unsqueeze(1).repeat(1, num_in_batch).view(-1)
for _ in range(attn_output.ndim - 1):
ref_scale_timing = ref_scale_timing.unsqueeze(-1)
hidden_states = ref_scale_timing * attn_output + hidden_states
if hidden_states.ndim == 4:
hidden_states = hidden_states.squeeze(1)
# 1.3 Multiview Attention
if num_in_batch > 1 and self.use_ma:
multivew_hidden_states = rearrange(norm_hidden_states, '(b n) l c -> b (n l) c', n=num_in_batch)
attn_output = self.attn_multiview(
multivew_hidden_states,
encoder_hidden_states=multivew_hidden_states,
**cross_attention_kwargs
)
attn_output = rearrange(attn_output, 'b (n l) c -> (b n) l c', n=num_in_batch)
hidden_states = mva_scale * attn_output + hidden_states
if hidden_states.ndim == 4:
hidden_states = hidden_states.squeeze(1)
# 1.2 GLIGEN Control
if gligen_kwargs is not None:
hidden_states = self.fuser(hidden_states, gligen_kwargs["objs"])
# 3. Cross-Attention
if self.attn2 is not None:
if self.norm_type == "ada_norm":
norm_hidden_states = self.norm2(hidden_states, timestep)
elif self.norm_type in ["ada_norm_zero", "layer_norm", "layer_norm_i2vgen"]:
norm_hidden_states = self.norm2(hidden_states)
elif self.norm_type == "ada_norm_single":
# For PixArt norm2 isn't applied here:
# https://github.com/PixArt-alpha/PixArt-alpha/blob/0f55e922376d8b797edd44d25d0e7464b260dcab/diffusion/model/nets/PixArtMS.py#L70C1-L76C103
norm_hidden_states = hidden_states
elif self.norm_type == "ada_norm_continuous":
norm_hidden_states = self.norm2(hidden_states, added_cond_kwargs["pooled_text_emb"])
else:
raise ValueError("Incorrect norm")
if self.pos_embed is not None and self.norm_type != "ada_norm_single":
norm_hidden_states = self.pos_embed(norm_hidden_states)
attn_output = self.attn2(
norm_hidden_states,
encoder_hidden_states=encoder_hidden_states,
attention_mask=encoder_attention_mask,
**cross_attention_kwargs,
)
hidden_states = attn_output + hidden_states
# 4. Feed-forward
# i2vgen doesn't have this norm 🤷‍♂️
if self.norm_type == "ada_norm_continuous":
norm_hidden_states = self.norm3(hidden_states, added_cond_kwargs["pooled_text_emb"])
elif not self.norm_type == "ada_norm_single":
norm_hidden_states = self.norm3(hidden_states)
if self.norm_type == "ada_norm_zero":
norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None]
if self.norm_type == "ada_norm_single":
norm_hidden_states = self.norm2(hidden_states)
norm_hidden_states = norm_hidden_states * (1 + scale_mlp) + shift_mlp
if self._chunk_size is not None:
# "feed_forward_chunk_size" can be used to save memory
ff_output = _chunked_feed_forward(self.ff, norm_hidden_states, self._chunk_dim, self._chunk_size)
else:
ff_output = self.ff(norm_hidden_states)
if self.norm_type == "ada_norm_zero":
ff_output = gate_mlp.unsqueeze(1) * ff_output
elif self.norm_type == "ada_norm_single":
ff_output = gate_mlp * ff_output
hidden_states = ff_output + hidden_states
if hidden_states.ndim == 4:
hidden_states = hidden_states.squeeze(1)
return hidden_states
import copy
class UNet2p5DConditionModel(torch.nn.Module):
def __init__(self, unet: UNet2DConditionModel) -> None:
super().__init__()
self.unet = unet
self.use_ma = True
self.use_ra = True
self.use_camera_embedding = True
self.use_dual_stream = True
if self.use_dual_stream:
self.unet_dual = copy.deepcopy(unet)
self.init_attention(self.unet_dual)
self.init_attention(self.unet, use_ma=self.use_ma, use_ra=self.use_ra)
self.init_condition()
self.init_camera_embedding()
@staticmethod
def from_pretrained(pretrained_model_name_or_path, **kwargs):
torch_dtype = kwargs.pop('torch_dtype', torch.float32)
config_path = os.path.join(pretrained_model_name_or_path, 'config.json')
unet_ckpt_path = os.path.join(pretrained_model_name_or_path, 'diffusion_pytorch_model.bin')
with open(config_path, 'r', encoding='utf-8') as file:
config = json.load(file)
unet = UNet2DConditionModel(**config)
unet = UNet2p5DConditionModel(unet)
unet_ckpt = torch.load(unet_ckpt_path, map_location='cpu', weights_only=True)
unet.load_state_dict(unet_ckpt, strict=True)
unet = unet.to(torch_dtype)
return unet
def init_condition(self):
self.unet.conv_in = torch.nn.Conv2d(
12,
self.unet.conv_in.out_channels,
kernel_size=self.unet.conv_in.kernel_size,
stride=self.unet.conv_in.stride,
padding=self.unet.conv_in.padding,
dilation=self.unet.conv_in.dilation,
groups=self.unet.conv_in.groups,
bias=self.unet.conv_in.bias is not None)
self.unet.learned_text_clip_gen = nn.Parameter(torch.randn(1,77,1024))
self.unet.learned_text_clip_ref = nn.Parameter(torch.randn(1,77,1024))
def init_camera_embedding(self):
self.max_num_ref_image = 5
self.max_num_gen_image = 12*3+4*2
if self.use_camera_embedding:
time_embed_dim = 1280
self.unet.class_embedding = nn.Embedding(self.max_num_ref_image+self.max_num_gen_image, time_embed_dim)
def init_attention(self, unet, use_ma=False, use_ra=False):
for down_block_i, down_block in enumerate(unet.down_blocks):
if hasattr(down_block, "has_cross_attention") and down_block.has_cross_attention:
for attn_i, attn in enumerate(down_block.attentions):
for transformer_i, transformer in enumerate(attn.transformer_blocks):
if isinstance(transformer, BasicTransformerBlock):
attn.transformer_blocks[transformer_i] = Basic2p5DTransformerBlock(transformer, f'down_{down_block_i}_{attn_i}_{transformer_i}', use_ma, use_ra)
if hasattr(unet.mid_block, "has_cross_attention") and unet.mid_block.has_cross_attention:
for attn_i, attn in enumerate(unet.mid_block.attentions):
for transformer_i, transformer in enumerate(attn.transformer_blocks):
if isinstance(transformer, BasicTransformerBlock):
attn.transformer_blocks[transformer_i] = Basic2p5DTransformerBlock(transformer, f'mid_{attn_i}_{transformer_i}', use_ma, use_ra)
for up_block_i, up_block in enumerate(unet.up_blocks):
if hasattr(up_block, "has_cross_attention") and up_block.has_cross_attention:
for attn_i, attn in enumerate(up_block.attentions):
for transformer_i, transformer in enumerate(attn.transformer_blocks):
if isinstance(transformer, BasicTransformerBlock):
attn.transformer_blocks[transformer_i] = Basic2p5DTransformerBlock(transformer, f'up_{up_block_i}_{attn_i}_{transformer_i}', use_ma, use_ra)
def __getattr__(self, name: str):
try:
return super().__getattr__(name)
except AttributeError:
return getattr(self.unet, name)
def forward(
self, sample, timestep, encoder_hidden_states,
*args, down_intrablock_additional_residuals=None,
down_block_res_samples=None, mid_block_res_sample=None,
**cached_condition,
):
B, N_gen, _, H, W = sample.shape
assert H == W
if self.use_camera_embedding:
camera_info_gen = cached_condition['camera_info_gen'] + self.max_num_ref_image
camera_info_gen = rearrange(camera_info_gen, 'b n -> (b n)')
else:
camera_info_gen = None
sample = [sample]
if 'normal_imgs' in cached_condition:
sample.append(cached_condition["normal_imgs"])
if 'position_imgs' in cached_condition:
sample.append(cached_condition["position_imgs"])
sample = torch.cat(sample, dim=2)
sample = rearrange(sample, 'b n c h w -> (b n) c h w')
encoder_hidden_states_gen = encoder_hidden_states.unsqueeze(1).repeat(1, N_gen, 1, 1)
encoder_hidden_states_gen = rearrange(encoder_hidden_states_gen, 'b n l c -> (b n) l c')
if self.use_ra:
if 'condition_embed_dict' in cached_condition:
condition_embed_dict = cached_condition['condition_embed_dict']
else:
condition_embed_dict = {}
ref_latents = cached_condition['ref_latents']
N_ref = ref_latents.shape[1]
if self.use_camera_embedding:
camera_info_ref = cached_condition['camera_info_ref']
camera_info_ref = rearrange(camera_info_ref, 'b n -> (b n)')
else:
camera_info_ref = None
ref_latents = rearrange(ref_latents, 'b n c h w -> (b n) c h w')
encoder_hidden_states_ref = self.unet.learned_text_clip_ref.unsqueeze(1).repeat(B, N_ref, 1, 1)
encoder_hidden_states_ref = rearrange(encoder_hidden_states_ref, 'b n l c -> (b n) l c')
noisy_ref_latents = ref_latents
timestep_ref = 0
if self.use_dual_stream:
unet_ref = self.unet_dual
else:
unet_ref = self.unet
unet_ref(
noisy_ref_latents, timestep_ref,
encoder_hidden_states=encoder_hidden_states_ref,
class_labels=camera_info_ref,
# **kwargs
return_dict=False,
cross_attention_kwargs={
'mode':'w', 'num_in_batch':N_ref,
'condition_embed_dict':condition_embed_dict},
)
cached_condition['condition_embed_dict'] = condition_embed_dict
else:
condition_embed_dict = None
mva_scale = cached_condition.get('mva_scale', 1.0)
ref_scale = cached_condition.get('ref_scale', 1.0)
return self.unet(
sample, timestep,
encoder_hidden_states_gen, *args,
class_labels=camera_info_gen,
down_intrablock_additional_residuals=[
sample.to(dtype=self.unet.dtype) for sample in down_intrablock_additional_residuals
] if down_intrablock_additional_residuals is not None else None,
down_block_additional_residuals=[
sample.to(dtype=self.unet.dtype) for sample in down_block_res_samples
] if down_block_res_samples is not None else None,
mid_block_additional_residual=(
mid_block_res_sample.to(dtype=self.unet.dtype)
if mid_block_res_sample is not None else None
),
return_dict=False,
cross_attention_kwargs={
'mode':'r', 'num_in_batch':N_gen,
'condition_embed_dict':condition_embed_dict,
'mva_scale': mva_scale,
'ref_scale': ref_scale,
},
)