|
import os |
|
import json |
|
from typing import Any, Dict, Optional |
|
from diffusers.models import UNet2DConditionModel |
|
|
|
import numpy |
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
import torch.utils.checkpoint |
|
import torch.distributed |
|
from PIL import Image |
|
from einops import rearrange |
|
from typing import Any, Callable, Dict, List, Optional, Union, Tuple |
|
|
|
import diffusers |
|
from diffusers import ( |
|
AutoencoderKL, |
|
DDPMScheduler, |
|
DiffusionPipeline, |
|
EulerAncestralDiscreteScheduler, |
|
UNet2DConditionModel, |
|
ImagePipelineOutput |
|
) |
|
from diffusers.image_processor import VaeImageProcessor |
|
from diffusers.models.attention_processor import Attention, AttnProcessor, XFormersAttnProcessor, AttnProcessor2_0 |
|
from diffusers.utils.import_utils import is_xformers_available |
|
|
|
|
|
from diffusers.utils import deprecate |
|
|
|
from diffusers.models.transformers.transformer_2d import BasicTransformerBlock |
|
|
|
|
|
|
|
def _chunked_feed_forward(ff: nn.Module, hidden_states: torch.Tensor, chunk_dim: int, chunk_size: int): |
|
|
|
if hidden_states.shape[chunk_dim] % chunk_size != 0: |
|
raise ValueError( |
|
f"`hidden_states` dimension to be chunked: {hidden_states.shape[chunk_dim]} has to be divisible by chunk size: {chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`." |
|
) |
|
|
|
num_chunks = hidden_states.shape[chunk_dim] // chunk_size |
|
ff_output = torch.cat( |
|
[ff(hid_slice) for hid_slice in hidden_states.chunk(num_chunks, dim=chunk_dim)], |
|
dim=chunk_dim, |
|
) |
|
return ff_output |
|
|
|
|
|
class Basic2p5DTransformerBlock(torch.nn.Module): |
|
def __init__(self, transformer: BasicTransformerBlock, layer_name, use_ma=True, use_ra=True) -> None: |
|
super().__init__() |
|
self.transformer = transformer |
|
self.layer_name = layer_name |
|
self.use_ma = use_ma |
|
self.use_ra = use_ra |
|
|
|
|
|
if self.use_ma: |
|
self.attn_multiview = Attention( |
|
query_dim=self.dim, |
|
heads=self.num_attention_heads, |
|
dim_head=self.attention_head_dim, |
|
dropout=self.dropout, |
|
bias=self.attention_bias, |
|
cross_attention_dim=None, |
|
upcast_attention=self.attn1.upcast_attention, |
|
out_bias=True, |
|
) |
|
|
|
|
|
if self.use_ra: |
|
self.attn_refview = Attention( |
|
query_dim=self.dim, |
|
heads=self.num_attention_heads, |
|
dim_head=self.attention_head_dim, |
|
dropout=self.dropout, |
|
bias=self.attention_bias, |
|
cross_attention_dim=None, |
|
upcast_attention=self.attn1.upcast_attention, |
|
out_bias=True, |
|
) |
|
|
|
def __getattr__(self, name: str): |
|
try: |
|
return super().__getattr__(name) |
|
except AttributeError: |
|
return getattr(self.transformer, name) |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
encoder_hidden_states: Optional[torch.Tensor] = None, |
|
encoder_attention_mask: Optional[torch.Tensor] = None, |
|
timestep: Optional[torch.LongTensor] = None, |
|
cross_attention_kwargs: Dict[str, Any] = None, |
|
class_labels: Optional[torch.LongTensor] = None, |
|
added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None, |
|
) -> torch.Tensor: |
|
|
|
|
|
|
|
batch_size = hidden_states.shape[0] |
|
|
|
cross_attention_kwargs = cross_attention_kwargs.copy() if cross_attention_kwargs is not None else {} |
|
num_in_batch = cross_attention_kwargs.pop('num_in_batch', 1) |
|
mode = cross_attention_kwargs.pop('mode', None) |
|
mva_scale = cross_attention_kwargs.pop('mva_scale', 1.0) |
|
ref_scale = cross_attention_kwargs.pop('ref_scale', 1.0) |
|
condition_embed_dict = cross_attention_kwargs.pop("condition_embed_dict", None) |
|
|
|
|
|
if self.norm_type == "ada_norm": |
|
norm_hidden_states = self.norm1(hidden_states, timestep) |
|
elif self.norm_type == "ada_norm_zero": |
|
norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1( |
|
hidden_states, timestep, class_labels, hidden_dtype=hidden_states.dtype |
|
) |
|
elif self.norm_type in ["layer_norm", "layer_norm_i2vgen"]: |
|
norm_hidden_states = self.norm1(hidden_states) |
|
elif self.norm_type == "ada_norm_continuous": |
|
norm_hidden_states = self.norm1(hidden_states, added_cond_kwargs["pooled_text_emb"]) |
|
elif self.norm_type == "ada_norm_single": |
|
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = ( |
|
self.scale_shift_table[None] + timestep.reshape(batch_size, 6, -1) |
|
).chunk(6, dim=1) |
|
norm_hidden_states = self.norm1(hidden_states) |
|
norm_hidden_states = norm_hidden_states * (1 + scale_msa) + shift_msa |
|
else: |
|
raise ValueError("Incorrect norm used") |
|
|
|
if self.pos_embed is not None: |
|
norm_hidden_states = self.pos_embed(norm_hidden_states) |
|
|
|
|
|
cross_attention_kwargs = cross_attention_kwargs.copy() if cross_attention_kwargs is not None else {} |
|
gligen_kwargs = cross_attention_kwargs.pop("gligen", None) |
|
|
|
attn_output = self.attn1( |
|
norm_hidden_states, |
|
encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None, |
|
attention_mask=attention_mask, |
|
**cross_attention_kwargs, |
|
) |
|
|
|
if self.norm_type == "ada_norm_zero": |
|
attn_output = gate_msa.unsqueeze(1) * attn_output |
|
elif self.norm_type == "ada_norm_single": |
|
attn_output = gate_msa * attn_output |
|
|
|
hidden_states = attn_output + hidden_states |
|
if hidden_states.ndim == 4: |
|
hidden_states = hidden_states.squeeze(1) |
|
|
|
|
|
if 'w' in mode: |
|
condition_embed_dict[self.layer_name] = rearrange(norm_hidden_states, '(b n) l c -> b (n l) c', n=num_in_batch) |
|
|
|
if 'r' in mode and self.use_ra: |
|
condition_embed = condition_embed_dict[self.layer_name].unsqueeze(1).repeat(1,num_in_batch,1,1) |
|
condition_embed = rearrange(condition_embed, 'b n l c -> (b n) l c') |
|
|
|
attn_output = self.attn_refview( |
|
norm_hidden_states, |
|
encoder_hidden_states=condition_embed, |
|
attention_mask=None, |
|
**cross_attention_kwargs |
|
) |
|
ref_scale_timing = ref_scale |
|
if isinstance(ref_scale, torch.Tensor): |
|
ref_scale_timing = ref_scale.unsqueeze(1).repeat(1, num_in_batch).view(-1) |
|
for _ in range(attn_output.ndim - 1): |
|
ref_scale_timing = ref_scale_timing.unsqueeze(-1) |
|
hidden_states = ref_scale_timing * attn_output + hidden_states |
|
if hidden_states.ndim == 4: |
|
hidden_states = hidden_states.squeeze(1) |
|
|
|
|
|
|
|
if num_in_batch > 1 and self.use_ma: |
|
multivew_hidden_states = rearrange(norm_hidden_states, '(b n) l c -> b (n l) c', n=num_in_batch) |
|
|
|
attn_output = self.attn_multiview( |
|
multivew_hidden_states, |
|
encoder_hidden_states=multivew_hidden_states, |
|
**cross_attention_kwargs |
|
) |
|
|
|
attn_output = rearrange(attn_output, 'b (n l) c -> (b n) l c', n=num_in_batch) |
|
|
|
hidden_states = mva_scale * attn_output + hidden_states |
|
if hidden_states.ndim == 4: |
|
hidden_states = hidden_states.squeeze(1) |
|
|
|
|
|
if gligen_kwargs is not None: |
|
hidden_states = self.fuser(hidden_states, gligen_kwargs["objs"]) |
|
|
|
|
|
if self.attn2 is not None: |
|
if self.norm_type == "ada_norm": |
|
norm_hidden_states = self.norm2(hidden_states, timestep) |
|
elif self.norm_type in ["ada_norm_zero", "layer_norm", "layer_norm_i2vgen"]: |
|
norm_hidden_states = self.norm2(hidden_states) |
|
elif self.norm_type == "ada_norm_single": |
|
|
|
|
|
norm_hidden_states = hidden_states |
|
elif self.norm_type == "ada_norm_continuous": |
|
norm_hidden_states = self.norm2(hidden_states, added_cond_kwargs["pooled_text_emb"]) |
|
else: |
|
raise ValueError("Incorrect norm") |
|
|
|
if self.pos_embed is not None and self.norm_type != "ada_norm_single": |
|
norm_hidden_states = self.pos_embed(norm_hidden_states) |
|
|
|
|
|
attn_output = self.attn2( |
|
norm_hidden_states, |
|
encoder_hidden_states=encoder_hidden_states, |
|
attention_mask=encoder_attention_mask, |
|
**cross_attention_kwargs, |
|
) |
|
|
|
hidden_states = attn_output + hidden_states |
|
|
|
|
|
|
|
if self.norm_type == "ada_norm_continuous": |
|
norm_hidden_states = self.norm3(hidden_states, added_cond_kwargs["pooled_text_emb"]) |
|
elif not self.norm_type == "ada_norm_single": |
|
norm_hidden_states = self.norm3(hidden_states) |
|
|
|
if self.norm_type == "ada_norm_zero": |
|
norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None] |
|
|
|
if self.norm_type == "ada_norm_single": |
|
norm_hidden_states = self.norm2(hidden_states) |
|
norm_hidden_states = norm_hidden_states * (1 + scale_mlp) + shift_mlp |
|
|
|
if self._chunk_size is not None: |
|
|
|
ff_output = _chunked_feed_forward(self.ff, norm_hidden_states, self._chunk_dim, self._chunk_size) |
|
else: |
|
ff_output = self.ff(norm_hidden_states) |
|
|
|
if self.norm_type == "ada_norm_zero": |
|
ff_output = gate_mlp.unsqueeze(1) * ff_output |
|
elif self.norm_type == "ada_norm_single": |
|
ff_output = gate_mlp * ff_output |
|
|
|
hidden_states = ff_output + hidden_states |
|
if hidden_states.ndim == 4: |
|
hidden_states = hidden_states.squeeze(1) |
|
|
|
return hidden_states |
|
|
|
import copy |
|
class UNet2p5DConditionModel(torch.nn.Module): |
|
def __init__(self, unet: UNet2DConditionModel) -> None: |
|
super().__init__() |
|
self.unet = unet |
|
|
|
self.use_ma = True |
|
self.use_ra = True |
|
self.use_camera_embedding = True |
|
self.use_dual_stream = True |
|
|
|
if self.use_dual_stream: |
|
self.unet_dual = copy.deepcopy(unet) |
|
self.init_attention(self.unet_dual) |
|
self.init_attention(self.unet, use_ma=self.use_ma, use_ra=self.use_ra) |
|
self.init_condition() |
|
self.init_camera_embedding() |
|
|
|
|
|
@staticmethod |
|
def from_pretrained(pretrained_model_name_or_path, **kwargs): |
|
torch_dtype = kwargs.pop('torch_dtype', torch.float32) |
|
config_path = os.path.join(pretrained_model_name_or_path, 'config.json') |
|
unet_ckpt_path = os.path.join(pretrained_model_name_or_path, 'diffusion_pytorch_model.bin') |
|
with open(config_path, 'r', encoding='utf-8') as file: |
|
config = json.load(file) |
|
unet = UNet2DConditionModel(**config) |
|
unet = UNet2p5DConditionModel(unet) |
|
unet_ckpt = torch.load(unet_ckpt_path, map_location='cpu', weights_only=True) |
|
unet.load_state_dict(unet_ckpt, strict=True) |
|
unet = unet.to(torch_dtype) |
|
return unet |
|
|
|
def init_condition(self): |
|
self.unet.conv_in = torch.nn.Conv2d( |
|
12, |
|
self.unet.conv_in.out_channels, |
|
kernel_size=self.unet.conv_in.kernel_size, |
|
stride=self.unet.conv_in.stride, |
|
padding=self.unet.conv_in.padding, |
|
dilation=self.unet.conv_in.dilation, |
|
groups=self.unet.conv_in.groups, |
|
bias=self.unet.conv_in.bias is not None) |
|
self.unet.learned_text_clip_gen = nn.Parameter(torch.randn(1,77,1024)) |
|
self.unet.learned_text_clip_ref = nn.Parameter(torch.randn(1,77,1024)) |
|
|
|
def init_camera_embedding(self): |
|
|
|
self.max_num_ref_image = 5 |
|
self.max_num_gen_image = 12*3+4*2 |
|
|
|
if self.use_camera_embedding: |
|
time_embed_dim = 1280 |
|
self.unet.class_embedding = nn.Embedding(self.max_num_ref_image+self.max_num_gen_image, time_embed_dim) |
|
|
|
|
|
def init_attention(self, unet, use_ma=False, use_ra=False): |
|
|
|
for down_block_i, down_block in enumerate(unet.down_blocks): |
|
if hasattr(down_block, "has_cross_attention") and down_block.has_cross_attention: |
|
for attn_i, attn in enumerate(down_block.attentions): |
|
for transformer_i, transformer in enumerate(attn.transformer_blocks): |
|
if isinstance(transformer, BasicTransformerBlock): |
|
attn.transformer_blocks[transformer_i] = Basic2p5DTransformerBlock(transformer, f'down_{down_block_i}_{attn_i}_{transformer_i}', use_ma, use_ra) |
|
|
|
|
|
if hasattr(unet.mid_block, "has_cross_attention") and unet.mid_block.has_cross_attention: |
|
for attn_i, attn in enumerate(unet.mid_block.attentions): |
|
for transformer_i, transformer in enumerate(attn.transformer_blocks): |
|
if isinstance(transformer, BasicTransformerBlock): |
|
attn.transformer_blocks[transformer_i] = Basic2p5DTransformerBlock(transformer, f'mid_{attn_i}_{transformer_i}', use_ma, use_ra) |
|
|
|
for up_block_i, up_block in enumerate(unet.up_blocks): |
|
if hasattr(up_block, "has_cross_attention") and up_block.has_cross_attention: |
|
for attn_i, attn in enumerate(up_block.attentions): |
|
for transformer_i, transformer in enumerate(attn.transformer_blocks): |
|
if isinstance(transformer, BasicTransformerBlock): |
|
attn.transformer_blocks[transformer_i] = Basic2p5DTransformerBlock(transformer, f'up_{up_block_i}_{attn_i}_{transformer_i}', use_ma, use_ra) |
|
|
|
|
|
def __getattr__(self, name: str): |
|
try: |
|
return super().__getattr__(name) |
|
except AttributeError: |
|
return getattr(self.unet, name) |
|
|
|
def forward( |
|
self, sample, timestep, encoder_hidden_states, |
|
*args, down_intrablock_additional_residuals=None, |
|
down_block_res_samples=None, mid_block_res_sample=None, |
|
**cached_condition, |
|
): |
|
B, N_gen, _, H, W = sample.shape |
|
assert H == W |
|
|
|
if self.use_camera_embedding: |
|
camera_info_gen = cached_condition['camera_info_gen'] + self.max_num_ref_image |
|
camera_info_gen = rearrange(camera_info_gen, 'b n -> (b n)') |
|
else: |
|
camera_info_gen = None |
|
|
|
sample = [sample] |
|
if 'normal_imgs' in cached_condition: |
|
sample.append(cached_condition["normal_imgs"]) |
|
if 'position_imgs' in cached_condition: |
|
sample.append(cached_condition["position_imgs"]) |
|
sample = torch.cat(sample, dim=2) |
|
|
|
sample = rearrange(sample, 'b n c h w -> (b n) c h w') |
|
|
|
encoder_hidden_states_gen = encoder_hidden_states.unsqueeze(1).repeat(1, N_gen, 1, 1) |
|
encoder_hidden_states_gen = rearrange(encoder_hidden_states_gen, 'b n l c -> (b n) l c') |
|
|
|
if self.use_ra: |
|
if 'condition_embed_dict' in cached_condition: |
|
condition_embed_dict = cached_condition['condition_embed_dict'] |
|
else: |
|
condition_embed_dict = {} |
|
ref_latents = cached_condition['ref_latents'] |
|
N_ref = ref_latents.shape[1] |
|
if self.use_camera_embedding: |
|
camera_info_ref = cached_condition['camera_info_ref'] |
|
camera_info_ref = rearrange(camera_info_ref, 'b n -> (b n)') |
|
else: |
|
camera_info_ref = None |
|
|
|
ref_latents = rearrange(ref_latents, 'b n c h w -> (b n) c h w') |
|
|
|
encoder_hidden_states_ref = self.unet.learned_text_clip_ref.unsqueeze(1).repeat(B, N_ref, 1, 1) |
|
encoder_hidden_states_ref = rearrange(encoder_hidden_states_ref, 'b n l c -> (b n) l c') |
|
|
|
noisy_ref_latents = ref_latents |
|
timestep_ref = 0 |
|
|
|
if self.use_dual_stream: |
|
unet_ref = self.unet_dual |
|
else: |
|
unet_ref = self.unet |
|
unet_ref( |
|
noisy_ref_latents, timestep_ref, |
|
encoder_hidden_states=encoder_hidden_states_ref, |
|
class_labels=camera_info_ref, |
|
|
|
return_dict=False, |
|
cross_attention_kwargs={ |
|
'mode':'w', 'num_in_batch':N_ref, |
|
'condition_embed_dict':condition_embed_dict}, |
|
) |
|
cached_condition['condition_embed_dict'] = condition_embed_dict |
|
else: |
|
condition_embed_dict = None |
|
|
|
|
|
mva_scale = cached_condition.get('mva_scale', 1.0) |
|
ref_scale = cached_condition.get('ref_scale', 1.0) |
|
|
|
return self.unet( |
|
sample, timestep, |
|
encoder_hidden_states_gen, *args, |
|
class_labels=camera_info_gen, |
|
down_intrablock_additional_residuals=[ |
|
sample.to(dtype=self.unet.dtype) for sample in down_intrablock_additional_residuals |
|
] if down_intrablock_additional_residuals is not None else None, |
|
down_block_additional_residuals=[ |
|
sample.to(dtype=self.unet.dtype) for sample in down_block_res_samples |
|
] if down_block_res_samples is not None else None, |
|
mid_block_additional_residual=( |
|
mid_block_res_sample.to(dtype=self.unet.dtype) |
|
if mid_block_res_sample is not None else None |
|
), |
|
return_dict=False, |
|
cross_attention_kwargs={ |
|
'mode':'r', 'num_in_batch':N_gen, |
|
'condition_embed_dict':condition_embed_dict, |
|
'mva_scale': mva_scale, |
|
'ref_scale': ref_scale, |
|
}, |
|
) |