Image-to-3D
Hunyuan3D-2
Diffusers
Safetensors
English
Chinese
text-to-3d
Huiwenshi commited on
Commit
fa26a41
·
verified ·
1 Parent(s): 18f2372

Delete hunyuan3d-paintpbr-v2-1/model.py

Browse files
Files changed (1) hide show
  1. hunyuan3d-paintpbr-v2-1/model.py +0 -622
hunyuan3d-paintpbr-v2-1/model.py DELETED
@@ -1,622 +0,0 @@
1
- # Hunyuan 3D is licensed under the TENCENT HUNYUAN NON-COMMERCIAL LICENSE AGREEMENT
2
- # except for the third-party components listed below.
3
- # Hunyuan 3D does not impose any additional limitations beyond what is outlined
4
- # in the repsective licenses of these third-party components.
5
- # Users must comply with all terms and conditions of original licenses of these third-party
6
- # components and must ensure that the usage of the third party components adheres to
7
- # all relevant laws and regulations.
8
-
9
- # For avoidance of doubts, Hunyuan 3D means the large language models and
10
- # their software and algorithms, including trained model weights, parameters (including
11
- # optimizer states), machine-learning model code, inference-enabling code, training-enabling code,
12
- # fine-tuning enabling code and other elements of the foregoing made publicly available
13
- # by Tencent in accordance with TENCENT HUNYUAN COMMUNITY LICENSE AGREEMENT.
14
-
15
- import os
16
-
17
- # import ipdb
18
- import numpy as np
19
- import torch
20
- import torch.nn as nn
21
- import torch.nn.functional as F
22
- import pytorch_lightning as pl
23
- from tqdm import tqdm
24
- from torchvision.transforms import v2
25
- from torchvision.utils import make_grid, save_image
26
- from einops import rearrange
27
-
28
- from diffusers import (
29
- DiffusionPipeline,
30
- EulerAncestralDiscreteScheduler,
31
- DDPMScheduler,
32
- UNet2DConditionModel,
33
- ControlNetModel,
34
- )
35
-
36
- from .modules import Dino_v2, UNet2p5DConditionModel
37
- import math
38
-
39
-
40
- def extract_into_tensor(a, t, x_shape):
41
- b, *_ = t.shape
42
- out = a.gather(-1, t)
43
- return out.reshape(b, *((1,) * (len(x_shape) - 1)))
44
-
45
-
46
- class HunyuanPaint(pl.LightningModule):
47
- def __init__(
48
- self,
49
- stable_diffusion_config,
50
- control_net_config=None,
51
- num_view=6,
52
- view_size=320,
53
- drop_cond_prob=0.1,
54
- with_normal_map=None,
55
- with_position_map=None,
56
- pbr_settings=["albedo", "mr"],
57
- **kwargs,
58
- ):
59
- """Initializes the HunyuanPaint Lightning Module.
60
-
61
- Args:
62
- stable_diffusion_config: Configuration for loading the Stable Diffusion pipeline
63
- control_net_config: Configuration for ControlNet (optional)
64
- num_view: Number of views to process
65
- view_size: Size of input views (height/width)
66
- drop_cond_prob: Probability of dropping conditioning input during training
67
- with_normal_map: Flag indicating whether normal maps are used
68
- with_position_map: Flag indicating whether position maps are used
69
- pbr_settings: List of PBR materials to generate (e.g., albedo, metallic-roughness)
70
- **kwargs: Additional keyword arguments
71
- """
72
- super(HunyuanPaint, self).__init__()
73
-
74
- self.num_view = num_view
75
- self.view_size = view_size
76
- self.drop_cond_prob = drop_cond_prob
77
- self.pbr_settings = pbr_settings
78
-
79
- # init modules
80
- pipeline = DiffusionPipeline.from_pretrained(**stable_diffusion_config)
81
- pipeline.set_pbr_settings(self.pbr_settings)
82
- pipeline.scheduler = EulerAncestralDiscreteScheduler.from_config(
83
- pipeline.scheduler.config, timestep_spacing="trailing"
84
- )
85
-
86
- self.with_normal_map = with_normal_map
87
- self.with_position_map = with_position_map
88
-
89
- self.pipeline = pipeline
90
-
91
- self.pipeline.vae.use_slicing = True
92
-
93
- train_sched = DDPMScheduler.from_config(self.pipeline.scheduler.config)
94
-
95
- if isinstance(self.pipeline.unet, UNet2DConditionModel):
96
- self.pipeline.unet = UNet2p5DConditionModel(
97
- self.pipeline.unet, train_sched, self.pipeline.scheduler, self.pbr_settings
98
- )
99
- self.train_scheduler = train_sched # use ddpm scheduler during training
100
-
101
- self.register_schedule()
102
-
103
- pipeline.set_learned_parameters()
104
-
105
- if control_net_config is not None:
106
- pipeline.unet = pipeline.unet.bfloat16().requires_grad_(control_net_config.train_unet)
107
- self.pipeline.add_controlnet(
108
- ControlNetModel.from_pretrained(control_net_config.pretrained_model_name_or_path),
109
- conditioning_scale=0.75,
110
- )
111
-
112
- self.unet = pipeline.unet
113
-
114
- self.pipeline.set_progress_bar_config(disable=True)
115
- self.pipeline.vae = self.pipeline.vae.bfloat16()
116
- self.pipeline.text_encoder = self.pipeline.text_encoder.bfloat16()
117
-
118
- if self.unet.use_dino:
119
- self.dino_v2 = Dino_v2("facebook/dinov2-giant")
120
- self.dino_v2 = self.dino_v2.bfloat16()
121
-
122
- self.validation_step_outputs = []
123
-
124
- def register_schedule(self):
125
-
126
- self.num_timesteps = self.train_scheduler.config.num_train_timesteps
127
-
128
- betas = self.train_scheduler.betas.detach().cpu()
129
-
130
- alphas = 1.0 - betas
131
- alphas_cumprod = torch.cumprod(alphas, dim=0)
132
- alphas_cumprod_prev = torch.cat([torch.ones(1, dtype=torch.float64), alphas_cumprod[:-1]], 0)
133
-
134
- self.register_buffer("betas", betas.float())
135
- self.register_buffer("alphas_cumprod", alphas_cumprod.float())
136
- self.register_buffer("alphas_cumprod_prev", alphas_cumprod_prev.float())
137
-
138
- # calculations for diffusion q(x_t | x_{t-1}) and others
139
- self.register_buffer("sqrt_alphas_cumprod", torch.sqrt(alphas_cumprod).float())
140
- self.register_buffer("sqrt_one_minus_alphas_cumprod", torch.sqrt(1 - alphas_cumprod).float())
141
-
142
- self.register_buffer("sqrt_recip_alphas_cumprod", torch.sqrt(1.0 / alphas_cumprod).float())
143
- self.register_buffer("sqrt_recipm1_alphas_cumprod", torch.sqrt(1.0 / alphas_cumprod - 1).float())
144
-
145
- def on_fit_start(self):
146
- device = torch.device(f"cuda:{self.local_rank}")
147
- self.pipeline.to(device)
148
- if self.global_rank == 0:
149
- os.makedirs(os.path.join(self.logdir, "images_val"), exist_ok=True)
150
-
151
- def prepare_batch_data(self, batch):
152
- """Preprocesses a batch of input data for training/inference.
153
-
154
- Args:
155
- batch: Raw input batch dictionary
156
-
157
- Returns:
158
- tuple: Contains:
159
- - cond_imgs: Primary conditioning images (B, 1, C, H, W)
160
- - cond_imgs_another: Secondary conditioning images (B, 1, C, H, W)
161
- - target_imgs: Dictionary of target PBR images resized and clamped
162
- - images_normal: Preprocessed normal maps (if available)
163
- - images_position: Preprocessed position maps (if available)
164
- """
165
-
166
- images_cond = batch["images_cond"].to(self.device) # (B, M, C, H, W), where M is the number of reference images
167
- cond_imgs, cond_imgs_another = images_cond[:, 0:1, ...], images_cond[:, 1:2, ...]
168
-
169
- cond_size = self.view_size
170
- cond_imgs = v2.functional.resize(cond_imgs, cond_size, interpolation=3, antialias=True).clamp(0, 1)
171
- cond_imgs_another = v2.functional.resize(cond_imgs_another, cond_size, interpolation=3, antialias=True).clamp(
172
- 0, 1
173
- )
174
-
175
- target_imgs = {}
176
- for pbr_token in self.pbr_settings:
177
- target_imgs[pbr_token] = batch[f"images_{pbr_token}"].to(self.device)
178
- target_imgs[pbr_token] = v2.functional.resize(
179
- target_imgs[pbr_token], self.view_size, interpolation=3, antialias=True
180
- ).clamp(0, 1)
181
-
182
- images_normal = None
183
- if "images_normal" in batch:
184
- images_normal = batch["images_normal"] # (B, N, C, H, W)
185
- images_normal = v2.functional.resize(images_normal, self.view_size, interpolation=3, antialias=True).clamp(
186
- 0, 1
187
- )
188
- images_normal = [images_normal]
189
-
190
- images_position = None
191
- if "images_position" in batch:
192
- images_position = batch["images_position"] # (B, N, C, H, W)
193
- images_position = v2.functional.resize(
194
- images_position, self.view_size, interpolation=3, antialias=True
195
- ).clamp(0, 1)
196
- images_position = [images_position]
197
-
198
- return cond_imgs, cond_imgs_another, target_imgs, images_normal, images_position
199
-
200
- @torch.no_grad()
201
- def forward_text_encoder(self, prompts):
202
- device = next(self.pipeline.vae.parameters()).device
203
- text_embeds = self.pipeline.encode_prompt(prompts, device, 1, False)[0]
204
- return text_embeds
205
-
206
- @torch.no_grad()
207
- def encode_images(self, images):
208
- """Encodes input images into latent representations using the VAE.
209
-
210
- Handles both standard input (B, N, C, H, W) and PBR input (B, N_pbrs, N, C, H, W)
211
- Maintains original batch structure in output latents.
212
-
213
- Args:
214
- images: Input images tensor
215
-
216
- Returns:
217
- torch.Tensor: Latent representations with original batch dimensions preserved
218
- """
219
-
220
- B = images.shape[0]
221
- image_ndims = images.ndim
222
- if image_ndims != 5:
223
- N_pbrs, N = images.shape[1:3]
224
- images = (
225
- rearrange(images, "b n c h w -> (b n) c h w")
226
- if image_ndims == 5
227
- else rearrange(images, "b n_pbrs n c h w -> (b n_pbrs n) c h w")
228
- )
229
- dtype = next(self.pipeline.vae.parameters()).dtype
230
-
231
- images = (images - 0.5) * 2.0
232
- posterior = self.pipeline.vae.encode(images.to(dtype)).latent_dist
233
- latents = posterior.sample() * self.pipeline.vae.config.scaling_factor
234
-
235
- latents = (
236
- rearrange(latents, "(b n) c h w -> b n c h w", b=B)
237
- if image_ndims == 5
238
- else rearrange(latents, "(b n_pbrs n) c h w -> b n_pbrs n c h w", b=B, n_pbrs=N_pbrs)
239
- )
240
-
241
- return latents
242
-
243
- def forward_unet(self, latents, t, **cached_condition):
244
- """Runs the UNet model to predict noise/latent residuals.
245
-
246
- Args:
247
- latents: Noisy latent representations (B, C, H, W)
248
- t: Timestep tensor (B,)
249
- **cached_condition: Dictionary of conditioning inputs (text embeds, reference images, etc)
250
-
251
- Returns:
252
- torch.Tensor: UNet output (predicted noise or velocity)
253
- """
254
-
255
- dtype = next(self.unet.parameters()).dtype
256
- latents = latents.to(dtype)
257
- shading_embeds = cached_condition["shading_embeds"]
258
- pred_noise = self.pipeline.unet(latents, t, encoder_hidden_states=shading_embeds, **cached_condition)
259
- return pred_noise[0]
260
-
261
- def predict_start_from_z_and_v(self, x_t, t, v):
262
- """
263
- Predicts clean image (x0) from noisy latents (x_t) and
264
- velocity prediction (v) using the v-prediction formula.
265
-
266
- Args:
267
- x_t: Noisy latents at timestep t
268
- t: Current timestep
269
- v: Predicted velocity (v) from UNet
270
-
271
- Returns:
272
- torch.Tensor: Predicted clean image (x0)
273
- """
274
-
275
- return (
276
- extract_into_tensor(self.sqrt_alphas_cumprod, t, x_t.shape) * x_t
277
- - extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_t.shape) * v
278
- )
279
-
280
- def get_v(self, x, noise, t):
281
- """Computes the target velocity (v) for v-prediction training.
282
-
283
- Args:
284
- x: Clean latents (x0)
285
- noise: Added noise
286
- t: Current timestep
287
-
288
- Returns:
289
- torch.Tensor: Target velocity
290
- """
291
-
292
- return (
293
- extract_into_tensor(self.sqrt_alphas_cumprod, t, x.shape) * noise
294
- - extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x.shape) * x
295
- )
296
-
297
- def training_step(self, batch, batch_idx):
298
- """Performs a single training step with both conditioning paths.
299
-
300
- Implements:
301
- 1. Dual-conditioning path training (main ref + secondary ref)
302
- 2. Velocity-prediction with consistency loss
303
- 3. Conditional dropout for robust learning
304
- 4. PBR-specific losses (albedo/metallic-roughness)
305
-
306
- Args:
307
- batch: Input batch from dataloader
308
- batch_idx: Index of current batch
309
-
310
- Returns:
311
- torch.Tensor: Combined loss value
312
- """
313
-
314
- cond_imgs, cond_imgs_another, target_imgs, normal_imgs, position_imgs = self.prepare_batch_data(batch)
315
-
316
- B, N_ref = cond_imgs.shape[:2]
317
- _, N_gen, _, H, W = target_imgs["albedo"].shape
318
- N_pbrs = len(self.pbr_settings)
319
- t = torch.randint(0, self.num_timesteps, size=(B,)).long().to(self.device)
320
- t = t.unsqueeze(-1).repeat(1, N_pbrs, N_gen)
321
- t = rearrange(t, "b n_pbrs n -> (b n_pbrs n)")
322
-
323
- all_target_pbrs = []
324
- for pbr_token in self.pbr_settings:
325
- all_target_pbrs.append(target_imgs[pbr_token])
326
- all_target_pbrs = torch.stack(all_target_pbrs, dim=0).transpose(1, 0)
327
- gen_latents = self.encode_images(all_target_pbrs) #! B, N_pbrs N C H W
328
- ref_latents = self.encode_images(cond_imgs) #! B, M, C, H, W
329
- ref_latents_another = self.encode_images(cond_imgs_another) #! B, M, C, H, W
330
-
331
- all_shading_tokens = []
332
- for token in self.pbr_settings:
333
- if token in ["albedo", "mr"]:
334
- all_shading_tokens.append(
335
- getattr(self.unet, f"learned_text_clip_{token}").unsqueeze(dim=0).repeat(B, 1, 1)
336
- )
337
- shading_embeds = torch.stack(all_shading_tokens, dim=1)
338
-
339
- if self.unet.use_dino:
340
- dino_hidden_states = self.dino_v2(cond_imgs[:, :1, ...])
341
- dino_hidden_states_another = self.dino_v2(cond_imgs_another[:, :1, ...])
342
-
343
- gen_latents = rearrange(gen_latents, "b n_pbrs n c h w -> (b n_pbrs n) c h w")
344
- noise = torch.randn_like(gen_latents).to(self.device)
345
- latents_noisy = self.train_scheduler.add_noise(gen_latents, noise, t).to(self.device)
346
- latents_noisy = rearrange(latents_noisy, "(b n_pbrs n) c h w -> b n_pbrs n c h w", b=B, n_pbrs=N_pbrs)
347
-
348
- cached_condition = {}
349
-
350
- if normal_imgs is not None:
351
- normal_embeds = self.encode_images(normal_imgs[0])
352
- cached_condition["embeds_normal"] = normal_embeds #! B, N, C, H, W
353
-
354
- if position_imgs is not None:
355
- position_embeds = self.encode_images(position_imgs[0])
356
- cached_condition["embeds_position"] = position_embeds #! B, N, C, H, W
357
- cached_condition["position_maps"] = position_imgs[0] #! B, N, C, H, W
358
-
359
- for b in range(B):
360
- prob = np.random.rand()
361
- if prob < self.drop_cond_prob:
362
- if "normal_imgs" in cached_condition:
363
- cached_condition["embeds_normal"][b, ...] = torch.zeros_like(
364
- cached_condition["embeds_normal"][b, ...]
365
- )
366
- if "position_imgs" in cached_condition:
367
- cached_condition["embeds_position"][b, ...] = torch.zeros_like(
368
- cached_condition["embeds_position"][b, ...]
369
- )
370
-
371
- prob = np.random.rand()
372
- if prob < self.drop_cond_prob:
373
- if "position_maps" in cached_condition:
374
- cached_condition["position_maps"][b, ...] = torch.zeros_like(
375
- cached_condition["position_maps"][b, ...]
376
- )
377
-
378
- prob = np.random.rand()
379
- if prob < self.drop_cond_prob:
380
- dino_hidden_states[b, ...] = torch.zeros_like(dino_hidden_states[b, ...])
381
- prob = np.random.rand()
382
- if prob < self.drop_cond_prob:
383
- dino_hidden_states_another[b, ...] = torch.zeros_like(dino_hidden_states_another[b, ...])
384
-
385
- # MVA & Ref Attention
386
- prob = np.random.rand()
387
- cached_condition["mva_scale"] = 1.0
388
- cached_condition["ref_scale"] = 1.0
389
- if prob < self.drop_cond_prob:
390
- cached_condition["mva_scale"] = 0.0
391
- cached_condition["ref_scale"] = 0.0
392
- elif prob > 1.0 - self.drop_cond_prob:
393
- prob = np.random.rand()
394
- if prob < 0.5:
395
- cached_condition["mva_scale"] = 0.0
396
- else:
397
- cached_condition["ref_scale"] = 0.0
398
- else:
399
- pass
400
-
401
- if self.train_scheduler.config.prediction_type == "v_prediction":
402
-
403
- cached_condition["shading_embeds"] = shading_embeds
404
- cached_condition["ref_latents"] = ref_latents
405
- cached_condition["dino_hidden_states"] = dino_hidden_states
406
- v_pred = self.forward_unet(latents_noisy, t, **cached_condition)
407
- v_pred_albedo, v_pred_mr = torch.split(
408
- rearrange(
409
- v_pred, "(b n_pbr n) c h w -> b n_pbr n c h w", n_pbr=len(self.pbr_settings), n=self.num_view
410
- ),
411
- 1,
412
- dim=1,
413
- )
414
- v_target = self.get_v(gen_latents, noise, t)
415
- v_target_albedo, v_target_mr = torch.split(
416
- rearrange(
417
- v_target, "(b n_pbr n) c h w -> b n_pbr n c h w", n_pbr=len(self.pbr_settings), n=self.num_view
418
- ),
419
- 1,
420
- dim=1,
421
- )
422
-
423
- albedo_loss_1, _ = self.compute_loss(v_pred_albedo, v_target_albedo)
424
- mr_loss_1, _ = self.compute_loss(v_pred_mr, v_target_mr)
425
-
426
- cached_condition["ref_latents"] = ref_latents_another
427
- cached_condition["dino_hidden_states"] = dino_hidden_states_another
428
- v_pred_another = self.forward_unet(latents_noisy, t, **cached_condition)
429
- v_pred_another_albedo, v_pred_another_mr = torch.split(
430
- rearrange(
431
- v_pred_another,
432
- "(b n_pbr n) c h w -> b n_pbr n c h w",
433
- n_pbr=len(self.pbr_settings),
434
- n=self.num_view,
435
- ),
436
- 1,
437
- dim=1,
438
- )
439
-
440
- albedo_loss_2, _ = self.compute_loss(v_pred_another_albedo, v_target_albedo)
441
- mr_loss_2, _ = self.compute_loss(v_pred_another_mr, v_target_mr)
442
-
443
- consistency_loss, _ = self.compute_loss(v_pred_another, v_pred)
444
-
445
- albedo_loss = (albedo_loss_1 + albedo_loss_2) * 0.5
446
- mr_loss = (mr_loss_1 + mr_loss_2) * 0.5
447
-
448
- log_loss_dict = {}
449
- log_loss_dict.update({f"train/albedo_loss": albedo_loss})
450
- log_loss_dict.update({f"train/mr_loss": mr_loss})
451
- log_loss_dict.update({f"train/cons_loss": consistency_loss})
452
-
453
- loss_dict = log_loss_dict
454
-
455
- elif self.train_scheduler.config.prediction_type == "epsilon":
456
- e_pred = self.forward_unet(latents_noisy, t, **cached_condition)
457
- loss, loss_dict = self.compute_loss(e_pred, noise)
458
- else:
459
- raise f"No {self.train_scheduler.config.prediction_type}"
460
-
461
- # logging
462
- self.log_dict(loss_dict, prog_bar=True, logger=True, on_step=True, on_epoch=True)
463
- self.log("global_step", self.global_step, prog_bar=True, logger=True, on_step=True, on_epoch=False)
464
- lr = self.optimizers().param_groups[0]["lr"]
465
- self.log("lr_abs", lr, prog_bar=True, logger=True, on_step=True, on_epoch=False)
466
-
467
- return 0.85 * (albedo_loss + mr_loss) + 0.15 * consistency_loss
468
-
469
- def compute_loss(self, noise_pred, noise_gt):
470
- loss = F.mse_loss(noise_pred, noise_gt)
471
- prefix = "train"
472
- loss_dict = {}
473
- loss_dict.update({f"{prefix}/loss": loss})
474
- return loss, loss_dict
475
-
476
- @torch.no_grad()
477
- def validation_step(self, batch, batch_idx):
478
- """Performs validation on a single batch.
479
-
480
- Generates predicted images using:
481
- 1. Reference conditioning images
482
- 2. Optional normal/position maps
483
- 3. Frozen DINO features (if enabled)
484
- 4. Text prompt conditioning
485
-
486
- Compares predictions against ground truth targets and prepares visualization.
487
- Stores results for epoch-level aggregation.
488
-
489
- Args:
490
- batch: Input batch from validation dataloader
491
- batch_idx: Index of current batch
492
- """
493
- # [Validation image generation and comparison logic...]
494
- # Key steps:
495
- # 1. Preprocess conditioning images to PIL format
496
- # 2. Set up conditioning inputs (normal maps, position maps, DINO features)
497
- # 3. Run pipeline inference with fixed prompt ("high quality")
498
- # 4. Decode latent outputs to image space
499
- # 5. Arrange predictions and ground truths for visualization
500
-
501
- cond_imgs_tensor, _, target_imgs, normal_imgs, position_imgs = self.prepare_batch_data(batch)
502
- resolution = self.view_size
503
- image_pils = []
504
- for i in range(cond_imgs_tensor.shape[0]):
505
- image_pils.append([])
506
- for j in range(cond_imgs_tensor.shape[1]):
507
- image_pils[-1].append(v2.functional.to_pil_image(cond_imgs_tensor[i, j, ...]))
508
-
509
- outputs, gts = [], []
510
- for idx in range(len(image_pils)):
511
- cond_imgs = image_pils[idx]
512
-
513
- cached_condition = dict(num_in_batch=self.num_view, N_pbrs=len(self.pbr_settings))
514
- if normal_imgs is not None:
515
- cached_condition["images_normal"] = normal_imgs[0][idx, ...].unsqueeze(0)
516
- if position_imgs is not None:
517
- cached_condition["images_position"] = position_imgs[0][idx, ...].unsqueeze(0)
518
- if self.pipeline.unet.use_dino:
519
- dino_hidden_states = self.dino_v2([cond_imgs][0])
520
- cached_condition["dino_hidden_states"] = dino_hidden_states
521
-
522
- latent = self.pipeline(
523
- cond_imgs,
524
- prompt="high quality",
525
- num_inference_steps=30,
526
- output_type="latent",
527
- height=resolution,
528
- width=resolution,
529
- **cached_condition,
530
- ).images
531
-
532
- image = self.pipeline.vae.decode(latent / self.pipeline.vae.config.scaling_factor, return_dict=False)[
533
- 0
534
- ] # [-1, 1]
535
- image = (image * 0.5 + 0.5).clamp(0, 1)
536
-
537
- image = rearrange(
538
- image, "(b n_pbr n) c h w -> b n_pbr n c h w", n_pbr=len(self.pbr_settings), n=self.num_view
539
- )
540
- image = torch.cat((torch.ones_like(image[:, :, :1, ...]) * 0.5, image), dim=2)
541
- image = rearrange(image, "b n_pbr n c h w -> (b n_pbr n) c h w")
542
- image = rearrange(
543
- image,
544
- "(b n_pbr n) c h w -> b c (n_pbr h) (n w)",
545
- b=1,
546
- n_pbr=len(self.pbr_settings),
547
- n=self.num_view + 1,
548
- )
549
- outputs.append(image)
550
-
551
- all_target_pbrs = []
552
- for pbr_token in self.pbr_settings:
553
- all_target_pbrs.append(target_imgs[pbr_token])
554
- all_target_pbrs = torch.stack(all_target_pbrs, dim=0).transpose(1, 0)
555
- all_target_pbrs = torch.cat(
556
- (cond_imgs_tensor.unsqueeze(1).repeat(1, len(self.pbr_settings), 1, 1, 1, 1), all_target_pbrs), dim=2
557
- )
558
- all_target_pbrs = rearrange(all_target_pbrs, "b n_pbrs n c h w -> b c (n_pbrs h) (n w)")
559
- gts = all_target_pbrs
560
- outputs = torch.cat(outputs, dim=0).to(self.device)
561
- images = torch.cat([gts, outputs], dim=-2)
562
- self.validation_step_outputs.append(images)
563
-
564
- @torch.no_grad()
565
- def on_validation_epoch_end(self):
566
- """Aggregates validation results at epoch end.
567
-
568
- Gathers outputs from all GPUs (if distributed training),
569
- creates a unified visualization grid, and saves to disk.
570
- Only rank 0 process performs saving.
571
- """
572
- # [Result aggregation and visualization...]
573
- # Key steps:
574
- # 1. Gather validation outputs from all processes
575
- # 2. Create image grid combining ground truths and predictions
576
- # 3. Save visualization with step-numbered filename
577
- # 4. Clear memory for next validation cycle
578
-
579
- images = torch.cat(self.validation_step_outputs, dim=0)
580
- all_images = self.all_gather(images)
581
- all_images = rearrange(all_images, "r b c h w -> (r b) c h w")
582
-
583
- if self.global_rank == 0:
584
- grid = make_grid(all_images, nrow=8, normalize=True, value_range=(0, 1))
585
- save_image(grid, os.path.join(self.logdir, "images_val", f"val_{self.global_step:07d}.png"))
586
-
587
- self.validation_step_outputs.clear() # free memory
588
-
589
- def configure_optimizers(self):
590
- lr = self.learning_rate
591
- optimizer = torch.optim.AdamW(self.unet.parameters(), lr=lr)
592
-
593
- def lr_lambda(step):
594
- warm_up_step = 1000
595
- T_step = 9000
596
- gamma = 0.9
597
- min_lr = 0.1 if step >= warm_up_step else 0.0
598
- max_lr = 1.0
599
- normalized_step = step % (warm_up_step + T_step)
600
- current_max_lr = max_lr * gamma ** (step // (warm_up_step + T_step))
601
- if current_max_lr < min_lr:
602
- current_max_lr = min_lr
603
- if normalized_step < warm_up_step:
604
- lr_step = min_lr + (normalized_step / warm_up_step) * (current_max_lr - min_lr)
605
- else:
606
- step_wc_wp = normalized_step - warm_up_step
607
- ratio = step_wc_wp / T_step
608
- lr_step = min_lr + 0.5 * (current_max_lr - min_lr) * (1 + math.cos(math.pi * ratio))
609
- return lr_step
610
-
611
- lr_scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer, lr_lambda)
612
-
613
- lr_scheduler_config = {
614
- "scheduler": lr_scheduler,
615
- "interval": "step",
616
- "frequency": 1,
617
- "monitor": "val_loss",
618
- "strict": False,
619
- "name": None,
620
- }
621
-
622
- return {"optimizer": optimizer, "lr_scheduler": lr_scheduler_config}