|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
from typing import Optional, Dict, Tuple, Union, Literal, List, Callable |
|
from einops import rearrange |
|
from diffusers.utils import deprecate |
|
from diffusers.models.attention_processor import Attention, AttnProcessor |
|
|
|
|
|
class AttnUtils: |
|
""" |
|
Shared utility functions for attention processing. |
|
|
|
This class provides common operations used across different attention processors |
|
to eliminate code duplication and improve maintainability. |
|
""" |
|
|
|
@staticmethod |
|
def check_pytorch_compatibility(): |
|
""" |
|
Check PyTorch compatibility for scaled_dot_product_attention. |
|
|
|
Raises: |
|
ImportError: If PyTorch version doesn't support scaled_dot_product_attention |
|
""" |
|
if not hasattr(F, "scaled_dot_product_attention"): |
|
raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.") |
|
|
|
@staticmethod |
|
def handle_deprecation_warning(args, kwargs): |
|
""" |
|
Handle deprecation warning for the 'scale' argument. |
|
|
|
Args: |
|
args: Positional arguments passed to attention processor |
|
kwargs: Keyword arguments passed to attention processor |
|
""" |
|
if len(args) > 0 or kwargs.get("scale", None) is not None: |
|
deprecation_message = ( |
|
"The `scale` argument is deprecated and will be ignored." |
|
"Please remove it, as passing it will raise an error in the future." |
|
"`scale` should directly be passed while calling the underlying pipeline component" |
|
"i.e., via `cross_attention_kwargs`." |
|
) |
|
deprecate("scale", "1.0.0", deprecation_message) |
|
|
|
@staticmethod |
|
def prepare_hidden_states( |
|
hidden_states, attn, temb, spatial_norm_attr="spatial_norm", group_norm_attr="group_norm" |
|
): |
|
""" |
|
Common preprocessing of hidden states for attention computation. |
|
|
|
Args: |
|
hidden_states: Input hidden states tensor |
|
attn: Attention module instance |
|
temb: Optional temporal embedding tensor |
|
spatial_norm_attr: Attribute name for spatial normalization |
|
group_norm_attr: Attribute name for group normalization |
|
|
|
Returns: |
|
Tuple of (processed_hidden_states, residual, input_ndim, shape_info) |
|
""" |
|
residual = hidden_states |
|
|
|
spatial_norm = getattr(attn, spatial_norm_attr, None) |
|
if spatial_norm is not None: |
|
hidden_states = spatial_norm(hidden_states, temb) |
|
|
|
input_ndim = hidden_states.ndim |
|
|
|
if input_ndim == 4: |
|
batch_size, channel, height, width = hidden_states.shape |
|
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) |
|
else: |
|
batch_size, channel, height, width = None, None, None, None |
|
|
|
group_norm = getattr(attn, group_norm_attr, None) |
|
if group_norm is not None: |
|
hidden_states = group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) |
|
|
|
return hidden_states, residual, input_ndim, (batch_size, channel, height, width) |
|
|
|
@staticmethod |
|
def prepare_attention_mask(attention_mask, attn, sequence_length, batch_size): |
|
""" |
|
Prepare attention mask for scaled_dot_product_attention. |
|
|
|
Args: |
|
attention_mask: Input attention mask tensor or None |
|
attn: Attention module instance |
|
sequence_length: Length of the sequence |
|
batch_size: Batch size |
|
|
|
Returns: |
|
Prepared attention mask tensor reshaped for multi-head attention |
|
""" |
|
if attention_mask is not None: |
|
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) |
|
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1]) |
|
return attention_mask |
|
|
|
@staticmethod |
|
def reshape_qkv_for_attention(tensor, batch_size, attn_heads, head_dim): |
|
""" |
|
Reshape Q/K/V tensors for multi-head attention computation. |
|
|
|
Args: |
|
tensor: Input tensor to reshape |
|
batch_size: Batch size |
|
attn_heads: Number of attention heads |
|
head_dim: Dimension per attention head |
|
|
|
Returns: |
|
Reshaped tensor with shape [batch_size, attn_heads, seq_len, head_dim] |
|
""" |
|
return tensor.view(batch_size, -1, attn_heads, head_dim).transpose(1, 2) |
|
|
|
@staticmethod |
|
def apply_norms(query, key, norm_q, norm_k): |
|
""" |
|
Apply Q/K normalization layers if available. |
|
|
|
Args: |
|
query: Query tensor |
|
key: Key tensor |
|
norm_q: Query normalization layer (optional) |
|
norm_k: Key normalization layer (optional) |
|
|
|
Returns: |
|
Tuple of (normalized_query, normalized_key) |
|
""" |
|
if norm_q is not None: |
|
query = norm_q(query) |
|
if norm_k is not None: |
|
key = norm_k(key) |
|
return query, key |
|
|
|
@staticmethod |
|
def finalize_output(hidden_states, input_ndim, shape_info, attn, residual, to_out): |
|
""" |
|
Common output processing including projection, dropout, reshaping, and residual connection. |
|
|
|
Args: |
|
hidden_states: Processed hidden states from attention |
|
input_ndim: Original input tensor dimensions |
|
shape_info: Tuple containing original shape information |
|
attn: Attention module instance |
|
residual: Residual connection tensor |
|
to_out: Output projection layers [linear, dropout] |
|
|
|
Returns: |
|
Final output tensor after all processing steps |
|
""" |
|
batch_size, channel, height, width = shape_info |
|
|
|
|
|
hidden_states = to_out[0](hidden_states) |
|
hidden_states = to_out[1](hidden_states) |
|
|
|
|
|
if input_ndim == 4: |
|
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) |
|
|
|
|
|
if attn.residual_connection: |
|
hidden_states = hidden_states + residual |
|
|
|
|
|
hidden_states = hidden_states / attn.rescale_output_factor |
|
return hidden_states |
|
|
|
|
|
|
|
class BaseAttnProcessor(nn.Module): |
|
""" |
|
Base class for attention processors with common initialization. |
|
|
|
This base class provides shared parameter initialization and module registration |
|
functionality to reduce code duplication across different attention processor types. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
query_dim: int, |
|
pbr_setting: List[str] = ["albedo", "mr"], |
|
cross_attention_dim: Optional[int] = None, |
|
heads: int = 8, |
|
kv_heads: Optional[int] = None, |
|
dim_head: int = 64, |
|
dropout: float = 0.0, |
|
bias: bool = False, |
|
upcast_attention: bool = False, |
|
upcast_softmax: bool = False, |
|
cross_attention_norm: Optional[str] = None, |
|
cross_attention_norm_num_groups: int = 32, |
|
qk_norm: Optional[str] = None, |
|
added_kv_proj_dim: Optional[int] = None, |
|
added_proj_bias: Optional[bool] = True, |
|
norm_num_groups: Optional[int] = None, |
|
spatial_norm_dim: Optional[int] = None, |
|
out_bias: bool = True, |
|
scale_qk: bool = True, |
|
only_cross_attention: bool = False, |
|
eps: float = 1e-5, |
|
rescale_output_factor: float = 1.0, |
|
residual_connection: bool = False, |
|
_from_deprecated_attn_block: bool = False, |
|
processor: Optional["AttnProcessor"] = None, |
|
out_dim: int = None, |
|
out_context_dim: int = None, |
|
context_pre_only=None, |
|
pre_only=False, |
|
elementwise_affine: bool = True, |
|
is_causal: bool = False, |
|
**kwargs, |
|
): |
|
""" |
|
Initialize base attention processor with common parameters. |
|
|
|
Args: |
|
query_dim: Dimension of query features |
|
pbr_setting: List of PBR material types to process (e.g., ["albedo", "mr"]) |
|
cross_attention_dim: Dimension of cross-attention features (optional) |
|
heads: Number of attention heads |
|
kv_heads: Number of key-value heads for grouped query attention (optional) |
|
dim_head: Dimension per attention head |
|
dropout: Dropout rate |
|
bias: Whether to use bias in linear projections |
|
upcast_attention: Whether to upcast attention computation to float32 |
|
upcast_softmax: Whether to upcast softmax computation to float32 |
|
cross_attention_norm: Type of cross-attention normalization (optional) |
|
cross_attention_norm_num_groups: Number of groups for cross-attention norm |
|
qk_norm: Type of query-key normalization (optional) |
|
added_kv_proj_dim: Dimension for additional key-value projections (optional) |
|
added_proj_bias: Whether to use bias in additional projections |
|
norm_num_groups: Number of groups for normalization (optional) |
|
spatial_norm_dim: Dimension for spatial normalization (optional) |
|
out_bias: Whether to use bias in output projection |
|
scale_qk: Whether to scale query-key products |
|
only_cross_attention: Whether to only perform cross-attention |
|
eps: Small epsilon value for numerical stability |
|
rescale_output_factor: Factor to rescale output values |
|
residual_connection: Whether to use residual connections |
|
_from_deprecated_attn_block: Flag for deprecated attention blocks |
|
processor: Optional attention processor instance |
|
out_dim: Output dimension (optional) |
|
out_context_dim: Output context dimension (optional) |
|
context_pre_only: Whether to only process context in pre-processing |
|
pre_only: Whether to only perform pre-processing |
|
elementwise_affine: Whether to use element-wise affine transformations |
|
is_causal: Whether to use causal attention masking |
|
**kwargs: Additional keyword arguments |
|
""" |
|
super().__init__() |
|
AttnUtils.check_pytorch_compatibility() |
|
|
|
|
|
self.pbr_setting = pbr_setting |
|
self.n_pbr_tokens = len(self.pbr_setting) |
|
self.inner_dim = out_dim if out_dim is not None else dim_head * heads |
|
self.inner_kv_dim = self.inner_dim if kv_heads is None else dim_head * kv_heads |
|
self.query_dim = query_dim |
|
self.use_bias = bias |
|
self.is_cross_attention = cross_attention_dim is not None |
|
self.cross_attention_dim = cross_attention_dim if cross_attention_dim is not None else query_dim |
|
self.upcast_attention = upcast_attention |
|
self.upcast_softmax = upcast_softmax |
|
self.rescale_output_factor = rescale_output_factor |
|
self.residual_connection = residual_connection |
|
self.dropout = dropout |
|
self.fused_projections = False |
|
self.out_dim = out_dim if out_dim is not None else query_dim |
|
self.out_context_dim = out_context_dim if out_context_dim is not None else query_dim |
|
self.context_pre_only = context_pre_only |
|
self.pre_only = pre_only |
|
self.is_causal = is_causal |
|
self._from_deprecated_attn_block = _from_deprecated_attn_block |
|
self.scale_qk = scale_qk |
|
self.scale = dim_head**-0.5 if self.scale_qk else 1.0 |
|
self.heads = out_dim // dim_head if out_dim is not None else heads |
|
self.sliceable_head_dim = heads |
|
self.added_kv_proj_dim = added_kv_proj_dim |
|
self.only_cross_attention = only_cross_attention |
|
self.added_proj_bias = added_proj_bias |
|
|
|
|
|
if self.added_kv_proj_dim is None and self.only_cross_attention: |
|
raise ValueError( |
|
"`only_cross_attention` can only be set to True if `added_kv_proj_dim` is not None." |
|
"Make sure to set either `only_cross_attention=False` or define `added_kv_proj_dim`." |
|
) |
|
|
|
def register_pbr_modules(self, module_types: List[str], **kwargs): |
|
""" |
|
Generic PBR module registration to eliminate code repetition. |
|
|
|
Dynamically registers PyTorch modules for different PBR material types |
|
based on the specified module types and PBR settings. |
|
|
|
Args: |
|
module_types: List of module types to register ("qkv", "v_only", "out", "add_kv") |
|
**kwargs: Additional arguments for module configuration |
|
""" |
|
for pbr_token in self.pbr_setting: |
|
if pbr_token == "albedo": |
|
continue |
|
|
|
for module_type in module_types: |
|
if module_type == "qkv": |
|
self.register_module( |
|
f"to_q_{pbr_token}", nn.Linear(self.query_dim, self.inner_dim, bias=self.use_bias) |
|
) |
|
self.register_module( |
|
f"to_k_{pbr_token}", nn.Linear(self.cross_attention_dim, self.inner_dim, bias=self.use_bias) |
|
) |
|
self.register_module( |
|
f"to_v_{pbr_token}", nn.Linear(self.cross_attention_dim, self.inner_dim, bias=self.use_bias) |
|
) |
|
elif module_type == "v_only": |
|
self.register_module( |
|
f"to_v_{pbr_token}", nn.Linear(self.cross_attention_dim, self.inner_dim, bias=self.use_bias) |
|
) |
|
elif module_type == "out": |
|
if not self.pre_only: |
|
self.register_module( |
|
f"to_out_{pbr_token}", |
|
nn.ModuleList( |
|
[ |
|
nn.Linear(self.inner_dim, self.out_dim, bias=kwargs.get("out_bias", True)), |
|
nn.Dropout(self.dropout), |
|
] |
|
), |
|
) |
|
else: |
|
self.register_module(f"to_out_{pbr_token}", None) |
|
elif module_type == "add_kv": |
|
if self.added_kv_proj_dim is not None: |
|
self.register_module( |
|
f"add_k_proj_{pbr_token}", |
|
nn.Linear(self.added_kv_proj_dim, self.inner_kv_dim, bias=self.added_proj_bias), |
|
) |
|
self.register_module( |
|
f"add_v_proj_{pbr_token}", |
|
nn.Linear(self.added_kv_proj_dim, self.inner_kv_dim, bias=self.added_proj_bias), |
|
) |
|
else: |
|
self.register_module(f"add_k_proj_{pbr_token}", None) |
|
self.register_module(f"add_v_proj_{pbr_token}", None) |
|
|
|
|
|
|
|
class RotaryEmbedding: |
|
""" |
|
Rotary position embedding utilities for 3D spatial attention. |
|
|
|
Provides functions to compute and apply rotary position embeddings (RoPE) |
|
for 1D, 3D spatial coordinates used in 3D-aware attention mechanisms. |
|
""" |
|
|
|
@staticmethod |
|
def get_1d_rotary_pos_embed(dim: int, pos: torch.Tensor, theta: float = 10000.0, linear_factor=1.0, ntk_factor=1.0): |
|
""" |
|
Compute 1D rotary position embeddings. |
|
|
|
Args: |
|
dim: Embedding dimension (must be even) |
|
pos: Position tensor |
|
theta: Base frequency for rotary embeddings |
|
linear_factor: Linear scaling factor |
|
ntk_factor: NTK (Neural Tangent Kernel) scaling factor |
|
|
|
Returns: |
|
Tuple of (cos_embeddings, sin_embeddings) |
|
""" |
|
assert dim % 2 == 0 |
|
theta = theta * ntk_factor |
|
freqs = ( |
|
1.0 |
|
/ (theta ** (torch.arange(0, dim, 2, dtype=pos.dtype, device=pos.device)[: (dim // 2)] / dim)) |
|
/ linear_factor |
|
) |
|
freqs = torch.outer(pos, freqs) |
|
freqs_cos = freqs.cos().repeat_interleave(2, dim=1).float() |
|
freqs_sin = freqs.sin().repeat_interleave(2, dim=1).float() |
|
return freqs_cos, freqs_sin |
|
|
|
@staticmethod |
|
def get_3d_rotary_pos_embed(position, embed_dim, voxel_resolution, theta: int = 10000): |
|
""" |
|
Compute 3D rotary position embeddings for spatial coordinates. |
|
|
|
Args: |
|
position: 3D position tensor with shape [..., 3] |
|
embed_dim: Embedding dimension |
|
voxel_resolution: Resolution of the voxel grid |
|
theta: Base frequency for rotary embeddings |
|
|
|
Returns: |
|
Tuple of (cos_embeddings, sin_embeddings) for 3D positions |
|
""" |
|
assert position.shape[-1] == 3 |
|
dim_xy = embed_dim // 8 * 3 |
|
dim_z = embed_dim // 8 * 2 |
|
|
|
grid = torch.arange(voxel_resolution, dtype=torch.float32, device=position.device) |
|
freqs_xy = RotaryEmbedding.get_1d_rotary_pos_embed(dim_xy, grid, theta=theta) |
|
freqs_z = RotaryEmbedding.get_1d_rotary_pos_embed(dim_z, grid, theta=theta) |
|
|
|
xy_cos, xy_sin = freqs_xy |
|
z_cos, z_sin = freqs_z |
|
|
|
embed_flattn = position.view(-1, position.shape[-1]) |
|
x_cos = xy_cos[embed_flattn[:, 0], :] |
|
x_sin = xy_sin[embed_flattn[:, 0], :] |
|
y_cos = xy_cos[embed_flattn[:, 1], :] |
|
y_sin = xy_sin[embed_flattn[:, 1], :] |
|
z_cos = z_cos[embed_flattn[:, 2], :] |
|
z_sin = z_sin[embed_flattn[:, 2], :] |
|
|
|
cos = torch.cat((x_cos, y_cos, z_cos), dim=-1) |
|
sin = torch.cat((x_sin, y_sin, z_sin), dim=-1) |
|
|
|
cos = cos.view(*position.shape[:-1], embed_dim) |
|
sin = sin.view(*position.shape[:-1], embed_dim) |
|
return cos, sin |
|
|
|
@staticmethod |
|
def apply_rotary_emb(x: torch.Tensor, freqs_cis: Union[torch.Tensor, Tuple[torch.Tensor]]): |
|
""" |
|
Apply rotary position embeddings to input tensor. |
|
|
|
Args: |
|
x: Input tensor to apply rotary embeddings to |
|
freqs_cis: Tuple of (cos_embeddings, sin_embeddings) or single tensor |
|
|
|
Returns: |
|
Tensor with rotary position embeddings applied |
|
""" |
|
cos, sin = freqs_cis |
|
cos, sin = cos.to(x.device), sin.to(x.device) |
|
cos = cos.unsqueeze(1) |
|
sin = sin.unsqueeze(1) |
|
|
|
x_real, x_imag = x.reshape(*x.shape[:-1], -1, 2).unbind(-1) |
|
x_rotated = torch.stack([-x_imag, x_real], dim=-1).flatten(3) |
|
|
|
out = (x.float() * cos + x_rotated.float() * sin).to(x.dtype) |
|
return out |
|
|
|
|
|
|
|
class AttnCore: |
|
""" |
|
Core attention processing logic shared across processors. |
|
|
|
This class provides the fundamental attention computation pipeline |
|
that can be reused across different attention processor implementations. |
|
""" |
|
|
|
@staticmethod |
|
def process_attention_base( |
|
attn: Attention, |
|
hidden_states: torch.Tensor, |
|
encoder_hidden_states: Optional[torch.Tensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
temb: Optional[torch.Tensor] = None, |
|
get_qkv_fn: Callable = None, |
|
apply_rope_fn: Optional[Callable] = None, |
|
**kwargs, |
|
): |
|
""" |
|
Generic attention processing core shared across different processors. |
|
|
|
This function implements the common attention computation pipeline including: |
|
1. Hidden state preprocessing |
|
2. Attention mask preparation |
|
3. Q/K/V computation via provided function |
|
4. Tensor reshaping for multi-head attention |
|
5. Optional normalization and RoPE application |
|
6. Scaled dot-product attention computation |
|
|
|
Args: |
|
attn: Attention module instance |
|
hidden_states: Input hidden states tensor |
|
encoder_hidden_states: Optional encoder hidden states for cross-attention |
|
attention_mask: Optional attention mask tensor |
|
temb: Optional temporal embedding tensor |
|
get_qkv_fn: Function to compute Q, K, V tensors |
|
apply_rope_fn: Optional function to apply rotary position embeddings |
|
**kwargs: Additional keyword arguments passed to subfunctions |
|
|
|
Returns: |
|
Tuple containing (attention_output, residual, input_ndim, shape_info, |
|
batch_size, num_heads, head_dim) |
|
""" |
|
|
|
hidden_states, residual, input_ndim, shape_info = AttnUtils.prepare_hidden_states(hidden_states, attn, temb) |
|
|
|
batch_size, sequence_length, _ = ( |
|
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape |
|
) |
|
|
|
|
|
attention_mask = AttnUtils.prepare_attention_mask(attention_mask, attn, sequence_length, batch_size) |
|
|
|
|
|
if encoder_hidden_states is None: |
|
encoder_hidden_states = hidden_states |
|
elif attn.norm_cross: |
|
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) |
|
|
|
query, key, value = get_qkv_fn(attn, hidden_states, encoder_hidden_states, **kwargs) |
|
|
|
|
|
inner_dim = key.shape[-1] |
|
head_dim = inner_dim // attn.heads |
|
|
|
query = AttnUtils.reshape_qkv_for_attention(query, batch_size, attn.heads, head_dim) |
|
key = AttnUtils.reshape_qkv_for_attention(key, batch_size, attn.heads, head_dim) |
|
value = AttnUtils.reshape_qkv_for_attention(value, batch_size, attn.heads, value.shape[-1] // attn.heads) |
|
|
|
|
|
query, key = AttnUtils.apply_norms(query, key, getattr(attn, "norm_q", None), getattr(attn, "norm_k", None)) |
|
|
|
|
|
if apply_rope_fn is not None: |
|
query, key = apply_rope_fn(query, key, head_dim, **kwargs) |
|
|
|
|
|
hidden_states = F.scaled_dot_product_attention( |
|
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False |
|
) |
|
|
|
return hidden_states, residual, input_ndim, shape_info, batch_size, attn.heads, head_dim |
|
|
|
|
|
|
|
class PoseRoPEAttnProcessor2_0: |
|
""" |
|
Attention processor with Rotary Position Encoding (RoPE) for 3D spatial awareness. |
|
|
|
This processor extends standard attention with 3D rotary position embeddings |
|
to provide spatial awareness for 3D scene understanding tasks. |
|
""" |
|
|
|
def __init__(self): |
|
"""Initialize the RoPE attention processor.""" |
|
AttnUtils.check_pytorch_compatibility() |
|
|
|
def __call__( |
|
self, |
|
attn: Attention, |
|
hidden_states: torch.Tensor, |
|
encoder_hidden_states: Optional[torch.Tensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_indices: Dict = None, |
|
temb: Optional[torch.Tensor] = None, |
|
n_pbrs=1, |
|
*args, |
|
**kwargs, |
|
) -> torch.Tensor: |
|
""" |
|
Apply RoPE-enhanced attention computation. |
|
|
|
Args: |
|
attn: Attention module instance |
|
hidden_states: Input hidden states tensor |
|
encoder_hidden_states: Optional encoder hidden states for cross-attention |
|
attention_mask: Optional attention mask tensor |
|
position_indices: Dictionary containing 3D position information for RoPE |
|
temb: Optional temporal embedding tensor |
|
n_pbrs: Number of PBR material types |
|
*args: Additional positional arguments |
|
**kwargs: Additional keyword arguments |
|
|
|
Returns: |
|
Attention output tensor with applied rotary position encodings |
|
""" |
|
AttnUtils.handle_deprecation_warning(args, kwargs) |
|
|
|
def get_qkv(attn, hidden_states, encoder_hidden_states, **kwargs): |
|
return attn.to_q(hidden_states), attn.to_k(encoder_hidden_states), attn.to_v(encoder_hidden_states) |
|
|
|
def apply_rope(query, key, head_dim, **kwargs): |
|
if position_indices is not None: |
|
if head_dim in position_indices: |
|
image_rotary_emb = position_indices[head_dim] |
|
else: |
|
image_rotary_emb = RotaryEmbedding.get_3d_rotary_pos_embed( |
|
rearrange( |
|
position_indices["voxel_indices"].unsqueeze(1).repeat(1, n_pbrs, 1, 1), |
|
"b n_pbrs l c -> (b n_pbrs) l c", |
|
), |
|
head_dim, |
|
voxel_resolution=position_indices["voxel_resolution"], |
|
) |
|
position_indices[head_dim] = image_rotary_emb |
|
|
|
query = RotaryEmbedding.apply_rotary_emb(query, image_rotary_emb) |
|
key = RotaryEmbedding.apply_rotary_emb(key, image_rotary_emb) |
|
return query, key |
|
|
|
|
|
hidden_states, residual, input_ndim, shape_info, batch_size, heads, head_dim = AttnCore.process_attention_base( |
|
attn, |
|
hidden_states, |
|
encoder_hidden_states, |
|
attention_mask, |
|
temb, |
|
get_qkv_fn=get_qkv, |
|
apply_rope_fn=apply_rope, |
|
position_indices=position_indices, |
|
n_pbrs=n_pbrs, |
|
) |
|
|
|
|
|
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, heads * head_dim) |
|
hidden_states = hidden_states.to(hidden_states.dtype) |
|
|
|
return AttnUtils.finalize_output(hidden_states, input_ndim, shape_info, attn, residual, attn.to_out) |
|
|
|
|
|
class SelfAttnProcessor2_0(BaseAttnProcessor): |
|
""" |
|
Self-attention processor with PBR (Physically Based Rendering) material support. |
|
|
|
This processor handles multiple PBR material types (e.g., albedo, metallic-roughness) |
|
with separate attention computation paths for each material type. |
|
""" |
|
|
|
def __init__(self, **kwargs): |
|
""" |
|
Initialize self-attention processor with PBR support. |
|
|
|
Args: |
|
**kwargs: Arguments passed to BaseAttnProcessor initialization |
|
""" |
|
super().__init__(**kwargs) |
|
self.register_pbr_modules(["qkv", "out", "add_kv"], **kwargs) |
|
|
|
def process_single( |
|
self, |
|
attn: Attention, |
|
hidden_states: torch.Tensor, |
|
encoder_hidden_states: Optional[torch.Tensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
temb: Optional[torch.Tensor] = None, |
|
token: Literal["albedo", "mr"] = "albedo", |
|
multiple_devices=False, |
|
*args, |
|
**kwargs, |
|
): |
|
""" |
|
Process attention for a single PBR material type. |
|
|
|
Args: |
|
attn: Attention module instance |
|
hidden_states: Input hidden states tensor |
|
encoder_hidden_states: Optional encoder hidden states for cross-attention |
|
attention_mask: Optional attention mask tensor |
|
temb: Optional temporal embedding tensor |
|
token: PBR material type to process ("albedo", "mr", etc.) |
|
multiple_devices: Whether to use multiple GPU devices |
|
*args: Additional positional arguments |
|
**kwargs: Additional keyword arguments |
|
|
|
Returns: |
|
Processed attention output for the specified PBR material type |
|
""" |
|
target = attn if token == "albedo" else attn.processor |
|
token_suffix = "" if token == "albedo" else "_" + token |
|
|
|
|
|
if multiple_devices: |
|
device = torch.device("cuda:0") if token == "albedo" else torch.device("cuda:1") |
|
for attr in [f"to_q{token_suffix}", f"to_k{token_suffix}", f"to_v{token_suffix}", f"to_out{token_suffix}"]: |
|
getattr(target, attr).to(device) |
|
|
|
def get_qkv(attn, hidden_states, encoder_hidden_states, **kwargs): |
|
return ( |
|
getattr(target, f"to_q{token_suffix}")(hidden_states), |
|
getattr(target, f"to_k{token_suffix}")(encoder_hidden_states), |
|
getattr(target, f"to_v{token_suffix}")(encoder_hidden_states), |
|
) |
|
|
|
|
|
hidden_states, residual, input_ndim, shape_info, batch_size, heads, head_dim = AttnCore.process_attention_base( |
|
attn, hidden_states, encoder_hidden_states, attention_mask, temb, get_qkv_fn=get_qkv |
|
) |
|
|
|
|
|
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, heads * head_dim) |
|
hidden_states = hidden_states.to(hidden_states.dtype) |
|
|
|
return AttnUtils.finalize_output( |
|
hidden_states, input_ndim, shape_info, attn, residual, getattr(target, f"to_out{token_suffix}") |
|
) |
|
|
|
def __call__( |
|
self, |
|
attn: Attention, |
|
hidden_states: torch.Tensor, |
|
encoder_hidden_states: Optional[torch.Tensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
temb: Optional[torch.Tensor] = None, |
|
*args, |
|
**kwargs, |
|
) -> torch.Tensor: |
|
""" |
|
Apply self-attention with PBR material processing. |
|
|
|
Processes multiple PBR material types sequentially, applying attention |
|
computation for each material type separately and combining results. |
|
|
|
Args: |
|
attn: Attention module instance |
|
hidden_states: Input hidden states tensor with PBR dimension |
|
encoder_hidden_states: Optional encoder hidden states for cross-attention |
|
attention_mask: Optional attention mask tensor |
|
temb: Optional temporal embedding tensor |
|
*args: Additional positional arguments |
|
**kwargs: Additional keyword arguments |
|
|
|
Returns: |
|
Combined attention output for all PBR material types |
|
""" |
|
AttnUtils.handle_deprecation_warning(args, kwargs) |
|
|
|
B = hidden_states.size(0) |
|
pbr_hidden_states = torch.split(hidden_states, 1, dim=1) |
|
|
|
|
|
results = [] |
|
for token, pbr_hs in zip(self.pbr_setting, pbr_hidden_states): |
|
processed_hs = rearrange(pbr_hs, "b n_pbrs n l c -> (b n_pbrs n) l c").to("cuda:0") |
|
result = self.process_single(attn, processed_hs, None, attention_mask, temb, token, False) |
|
results.append(result) |
|
|
|
outputs = [rearrange(result, "(b n_pbrs n) l c -> b n_pbrs n l c", b=B, n_pbrs=1) for result in results] |
|
return torch.cat(outputs, dim=1) |
|
|
|
|
|
class RefAttnProcessor2_0(BaseAttnProcessor): |
|
""" |
|
Reference attention processor with shared value computation across PBR materials. |
|
|
|
This processor computes query and key once, but uses separate value projections |
|
for different PBR material types, enabling efficient multi-material processing. |
|
""" |
|
|
|
def __init__(self, **kwargs): |
|
""" |
|
Initialize reference attention processor. |
|
|
|
Args: |
|
**kwargs: Arguments passed to BaseAttnProcessor initialization |
|
""" |
|
super().__init__(**kwargs) |
|
self.pbr_settings = self.pbr_setting |
|
self.register_pbr_modules(["v_only", "out"], **kwargs) |
|
|
|
def __call__( |
|
self, |
|
attn: Attention, |
|
hidden_states: torch.Tensor, |
|
encoder_hidden_states: Optional[torch.Tensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
temb: Optional[torch.Tensor] = None, |
|
*args, |
|
**kwargs, |
|
) -> torch.Tensor: |
|
""" |
|
Apply reference attention with shared Q/K and separate V projections. |
|
|
|
This method computes query and key tensors once and reuses them across |
|
all PBR material types, while using separate value projections for each |
|
material type to maintain material-specific information. |
|
|
|
Args: |
|
attn: Attention module instance |
|
hidden_states: Input hidden states tensor |
|
encoder_hidden_states: Optional encoder hidden states for cross-attention |
|
attention_mask: Optional attention mask tensor |
|
temb: Optional temporal embedding tensor |
|
*args: Additional positional arguments |
|
**kwargs: Additional keyword arguments |
|
|
|
Returns: |
|
Stacked attention output for all PBR material types |
|
""" |
|
AttnUtils.handle_deprecation_warning(args, kwargs) |
|
|
|
def get_qkv(attn, hidden_states, encoder_hidden_states, **kwargs): |
|
query = attn.to_q(hidden_states) |
|
key = attn.to_k(encoder_hidden_states) |
|
|
|
|
|
value_list = [attn.to_v(encoder_hidden_states)] |
|
for token in ["_" + token for token in self.pbr_settings if token != "albedo"]: |
|
value_list.append(getattr(attn.processor, f"to_v{token}")(encoder_hidden_states)) |
|
value = torch.cat(value_list, dim=-1) |
|
|
|
return query, key, value |
|
|
|
|
|
hidden_states, residual, input_ndim, shape_info, batch_size, heads, head_dim = AttnCore.process_attention_base( |
|
attn, hidden_states, encoder_hidden_states, attention_mask, temb, get_qkv_fn=get_qkv |
|
) |
|
|
|
|
|
hidden_states_list = torch.split(hidden_states, head_dim, dim=-1) |
|
output_hidden_states_list = [] |
|
|
|
for i, hs in enumerate(hidden_states_list): |
|
hs = hs.transpose(1, 2).reshape(batch_size, -1, heads * head_dim).to(hs.dtype) |
|
token_suffix = "_" + self.pbr_settings[i] if self.pbr_settings[i] != "albedo" else "" |
|
target = attn if self.pbr_settings[i] == "albedo" else attn.processor |
|
|
|
hs = AttnUtils.finalize_output( |
|
hs, input_ndim, shape_info, attn, residual, getattr(target, f"to_out{token_suffix}") |
|
) |
|
output_hidden_states_list.append(hs) |
|
|
|
return torch.stack(output_hidden_states_list, dim=1) |
|
|