|
import torch |
|
from PIL import Image |
|
import base64 |
|
from io import BytesIO |
|
from transformers import AutoTokenizer |
|
|
|
import sys |
|
sys.path.append("code") |
|
from clip.model import CLIP |
|
|
|
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
model = CLIP.from_pretrained("tcm03/tsbir").to(device) |
|
model.eval() |
|
|
|
|
|
from clip.clip import _transform, tokenize |
|
transformer = _transform(model.visual.input_resolution, is_train=False) |
|
|
|
def preprocess_image(image_base64): |
|
"""Convert base64 encoded image to tensor.""" |
|
image = Image.open(BytesIO(base64.b64decode(image_base64))).convert("RGB") |
|
image = transformer(image).unsqueeze(0).to(device) |
|
return image |
|
|
|
def preprocess_text(text): |
|
"""Tokenize text query.""" |
|
return tokenize([str(text)])[0].unsqueeze(0).to(device) |
|
|
|
def get_fused_embedding(image_base64, text): |
|
"""Fuse sketch and text features into a single embedding.""" |
|
with torch.no_grad(): |
|
|
|
image_tensor = preprocess_image(image_base64) |
|
text_tensor = preprocess_text(text) |
|
|
|
|
|
sketch_feature = model.encode_sketch(image_tensor) |
|
text_feature = model.encode_text(text_tensor) |
|
|
|
|
|
sketch_feature = sketch_feature / sketch_feature.norm(dim=-1, keepdim=True) |
|
text_feature = text_feature / text_feature.norm(dim=-1, keepdim=True) |
|
|
|
|
|
fused_embedding = model.feature_fuse(sketch_feature, text_feature) |
|
return fused_embedding.cpu().numpy().tolist() |
|
|
|
|
|
def infer(inputs): |
|
""" |
|
Inference API entry point. |
|
Inputs: |
|
- 'image': Base64 encoded sketch image. |
|
- 'text': Text query. |
|
""" |
|
image_base64 = inputs.get("image", "") |
|
text_query = inputs.get("text", "") |
|
if not image_base64 or not text_query: |
|
return {"error": "Both 'image' (base64) and 'text' are required inputs."} |
|
|
|
|
|
fused_embedding = get_fused_embedding(image_base64, text_query) |
|
return {"fused_embedding": fused_embedding} |
|
|