File size: 2,864 Bytes
effd0b9
 
 
 
 
 
 
 
 
941ce80
 
effd0b9
 
 
 
 
b6ff56b
effd0b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
from typing import Dict, List, Any
from PIL import Image
import torch
import base64
import os
from io import BytesIO
import json

import sys
CODE_PATH = os.path.join(os.path.dirname(os.path.abspath(__file__)), "code")
sys.path.append(CODE_PATH)
from clip.model import CLIP
from clip.clip import _transform, tokenize

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

class EndpointHandler:
    def __init__(self, path: str = ""):
        """
        Initialize the pipeline by loading the model.
        Args:
            path (str): Path to the directory containing model weights and config.
        """
        model_config_file = os.path.join(path, "code/training/model_configs/ViT-B-16.json")
        with open(model_config_file, "r") as f:
            model_info = json.load(f)
        
        model_file = os.path.join(path, "model/tsbir_model_final.pt")
        self.model = CLIP(**model_info)
        checkpoint = torch.load(model_file, map_location=device)

        sd = checkpoint["state_dict"]
        if next(iter(sd.items()))[0].startswith("module"):
            sd = {k[len("module."):]: v for k, v in sd.items()}
        
        self.model.load_state_dict(sd, strict=False)
        self.model = self.model.to(device).eval()
        
        # Preprocessing
        self.transform = _transform(self.model.visual.input_resolution, is_train=False)
    
    def __call__(self, data: Any) -> Dict[str, List[float]]:
        """
        Process the request and return the fused embedding.
        Args:
            data (dict): Includes 'image' (base64) and 'text' (str) inputs.
        Returns:
            dict: {"fused_embedding": [float, float, ...]}
        """
        # Parse inputs
        inputs = data.pop("inputs", data)
        image_base64 = inputs.get("image", "")
        text_query = inputs.get("text", "")

        if not image_base64 or not text_query:
            return {"error": "Both 'image' (base64) and 'text' are required inputs."}

        # Preprocess the image
        image = Image.open(BytesIO(base64.b64decode(image_base64))).convert("RGB")
        image_tensor = self.transform(image).unsqueeze(0).to(device)

        # Preprocess the text
        text_tensor = tokenize([str(text_query)])[0].unsqueeze(0).to(device)

        # Generate features
        with torch.no_grad():
            sketch_feature = self.model.encode_sketch(image_tensor)
            text_feature = self.model.encode_text(text_tensor)

            # Normalize features
            sketch_feature = sketch_feature / sketch_feature.norm(dim=-1, keepdim=True)
            text_feature = text_feature / text_feature.norm(dim=-1, keepdim=True)

            # Fuse features
            fused_embedding = self.model.feature_fuse(sketch_feature, text_feature)

        return {"fused_embedding": fused_embedding.cpu().numpy().tolist()}