Model save
Browse files
README.md
CHANGED
@@ -1,31 +1,20 @@
|
|
1 |
---
|
2 |
library_name: transformers
|
3 |
license: apache-2.0
|
4 |
-
base_model: HuggingFaceTB/SmolLM2-
|
5 |
tags:
|
6 |
- generated_from_trainer
|
7 |
-
metrics:
|
8 |
-
- f1
|
9 |
-
- accuracy
|
10 |
-
- precision
|
11 |
-
- recall
|
12 |
model-index:
|
13 |
-
- name: toxicity-scorer-smollm2-
|
14 |
results: []
|
15 |
---
|
16 |
|
17 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
18 |
should probably proofread and complete it, then remove this comment. -->
|
19 |
|
20 |
-
# toxicity-scorer-smollm2-
|
21 |
|
22 |
-
This model is a fine-tuned version of [HuggingFaceTB/SmolLM2-
|
23 |
-
It achieves the following results on the evaluation set:
|
24 |
-
- Loss: 0.2347
|
25 |
-
- F1: 0.9013
|
26 |
-
- Accuracy: 0.9033
|
27 |
-
- Precision: 0.9006
|
28 |
-
- Recall: 0.9033
|
29 |
|
30 |
## Model description
|
31 |
|
@@ -44,9 +33,9 @@ More information needed
|
|
44 |
### Training hyperparameters
|
45 |
|
46 |
The following hyperparameters were used during training:
|
47 |
-
- learning_rate:
|
48 |
-
- train_batch_size:
|
49 |
-
- eval_batch_size:
|
50 |
- seed: 42
|
51 |
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
|
52 |
- lr_scheduler_type: cosine
|
@@ -55,21 +44,9 @@ The following hyperparameters were used during training:
|
|
55 |
|
56 |
### Training results
|
57 |
|
58 |
-
| Training Loss | Epoch
|
59 |
-
|
60 |
-
| No log | 0
|
61 |
-
| 0.2957 | 0.2340 | 5000 | 0.2896 | 0.8803 | 0.8841 | 0.8795 | 0.8841 |
|
62 |
-
| 0.2451 | 0.4680 | 10000 | 0.2443 | 0.8976 | 0.8995 | 0.8968 | 0.8995 |
|
63 |
-
| 0.2349 | 0.7020 | 15000 | 0.2383 | 0.8994 | 0.9020 | 0.8989 | 0.9020 |
|
64 |
-
| 0.2277 | 0.9360 | 20000 | 0.2363 | 0.9006 | 0.9027 | 0.8999 | 0.9027 |
|
65 |
-
| 0.2414 | 1.1700 | 25000 | 0.2352 | 0.9013 | 0.9035 | 0.9007 | 0.9035 |
|
66 |
-
| 0.2361 | 1.4040 | 30000 | 0.2349 | 0.9013 | 0.9035 | 0.9007 | 0.9035 |
|
67 |
-
| 0.2312 | 1.6380 | 35000 | 0.2348 | 0.9013 | 0.9033 | 0.9007 | 0.9033 |
|
68 |
-
| 0.2207 | 1.8720 | 40000 | 0.2348 | 0.9014 | 0.9035 | 0.9007 | 0.9035 |
|
69 |
-
| 0.2645 | 2.1060 | 45000 | 0.2347 | 0.9012 | 0.9033 | 0.9005 | 0.9033 |
|
70 |
-
| 0.2369 | 2.3399 | 50000 | 0.2347 | 0.9012 | 0.9033 | 0.9005 | 0.9033 |
|
71 |
-
| 0.2329 | 2.5739 | 55000 | 0.2347 | 0.9013 | 0.9034 | 0.9006 | 0.9034 |
|
72 |
-
| 0.2253 | 2.8079 | 60000 | 0.2347 | 0.9013 | 0.9033 | 0.9006 | 0.9033 |
|
73 |
|
74 |
|
75 |
### Framework versions
|
|
|
1 |
---
|
2 |
library_name: transformers
|
3 |
license: apache-2.0
|
4 |
+
base_model: HuggingFaceTB/SmolLM2-135M-Instruct
|
5 |
tags:
|
6 |
- generated_from_trainer
|
|
|
|
|
|
|
|
|
|
|
7 |
model-index:
|
8 |
+
- name: toxicity-scorer-smollm2-135m-it-freeze
|
9 |
results: []
|
10 |
---
|
11 |
|
12 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
13 |
should probably proofread and complete it, then remove this comment. -->
|
14 |
|
15 |
+
# toxicity-scorer-smollm2-135m-it-freeze
|
16 |
|
17 |
+
This model is a fine-tuned version of [HuggingFaceTB/SmolLM2-135M-Instruct](https://huggingface.co/HuggingFaceTB/SmolLM2-135M-Instruct) on an unknown dataset.
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
|
19 |
## Model description
|
20 |
|
|
|
33 |
### Training hyperparameters
|
34 |
|
35 |
The following hyperparameters were used during training:
|
36 |
+
- learning_rate: 3e-05
|
37 |
+
- train_batch_size: 36
|
38 |
+
- eval_batch_size: 36
|
39 |
- seed: 42
|
40 |
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
|
41 |
- lr_scheduler_type: cosine
|
|
|
44 |
|
45 |
### Training results
|
46 |
|
47 |
+
| Training Loss | Epoch | Step | Validation Loss | F1 | Accuracy | Precision | Recall |
|
48 |
+
|:-------------:|:-----:|:----:|:---------------:|:------:|:--------:|:---------:|:------:|
|
49 |
+
| No log | 0 | 0 | 0.9096 | 0.5932 | 0.507 | 0.7400 | 0.507 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
|
51 |
|
52 |
### Framework versions
|