Initial commit
Browse files- README.md +37 -0
- a2c-AntBulletEnv-v0.zip +3 -0
- a2c-AntBulletEnv-v0/_stable_baselines3_version +1 -0
- a2c-AntBulletEnv-v0/data +107 -0
- a2c-AntBulletEnv-v0/policy.optimizer.pth +3 -0
- a2c-AntBulletEnv-v0/policy.pth +3 -0
- a2c-AntBulletEnv-v0/pytorch_variables.pth +3 -0
- a2c-AntBulletEnv-v0/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- AntBulletEnv-v0
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: AntBulletEnv-v0
|
16 |
+
type: AntBulletEnv-v0
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 1286.00 +/- 294.49
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **AntBulletEnv-v0**
|
25 |
+
This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-AntBulletEnv-v0.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0ef30676ea763334cba23718e0638d600e1b6ecf3e170e57100ff4096d9e30b0
|
3 |
+
size 129231
|
a2c-AntBulletEnv-v0/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.8.0
|
a2c-AntBulletEnv-v0/data
ADDED
@@ -0,0 +1,107 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fddd1e49c10>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fddd1e49ca0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fddd1e49d30>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fddd1e49dc0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fddd1e49e50>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fddd1e49ee0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7fddd1e49f70>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fddd1e4c040>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fddd1e4c0d0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fddd1e4c160>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fddd1e4c1f0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fddd1e4c280>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7fddd1e4d140>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {
|
24 |
+
":type:": "<class 'dict'>",
|
25 |
+
":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
26 |
+
"log_std_init": -2,
|
27 |
+
"ortho_init": false,
|
28 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
29 |
+
"optimizer_kwargs": {
|
30 |
+
"alpha": 0.99,
|
31 |
+
"eps": 1e-05,
|
32 |
+
"weight_decay": 0
|
33 |
+
}
|
34 |
+
},
|
35 |
+
"num_timesteps": 2000000,
|
36 |
+
"_total_timesteps": 2000000,
|
37 |
+
"_num_timesteps_at_start": 0,
|
38 |
+
"seed": null,
|
39 |
+
"action_noise": null,
|
40 |
+
"start_time": 1681984301090248748,
|
41 |
+
"learning_rate": 0.00096,
|
42 |
+
"tensorboard_log": null,
|
43 |
+
"lr_schedule": {
|
44 |
+
":type:": "<class 'function'>",
|
45 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
46 |
+
},
|
47 |
+
"_last_obs": {
|
48 |
+
":type:": "<class 'numpy.ndarray'>",
|
49 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAH6B3T/wNQ6/paLjPplVXz53JqQ+8FONP8km2r+xnbc9XoCJP+1Rq79IUJA+3pWoP8vGMr/1S4Y/IJqivbF7SsCVMwC/juOUPn0/MsCyvSw/vLzlP6hDGcAArke/huGKP3B+gT8AJ+Y+gFTOPh+Qmb9Htks++6udPzodRL4igYk/FF9gP7NcFb7A/ce+5jKRv3PQjT8yY38+5r/Xvuunsj8HVWu+IrijvllLaT/yxb68PROeP5EHWb9wjCq+tGoNP62Ejr/oQ3Y+TE0PP6COrb/yC32/EWAOwIBUzj6AYlU/llx3PUDF9T9rg8e/LFMHPwfzVj41kYg/znGrv0skbr9Zk5g/lvNpvgE6+r2ijGM+dwqiv1XrXzxOT2g/ZHUxOwB7UD99U6e/hHoVv0dx4z7THXY/V3hdPy59i7+hjsK7cH6BPwAn5j6AVM4+H5CZv2OCmr6Z75C+9XQMP40exT/XQHq/WeMSP+O8G74I/SS/5WALP3ZsL0Bmph2/0U2Tv8W0hT4lHARAG8wvP8XK4D/avjI/AQNCQEbWHj/4gka/DABjv20fTT/gJ4Q+ZtZjP/ILfb8AJ+Y+QNAewIBiVT+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
50 |
+
},
|
51 |
+
"_last_episode_starts": {
|
52 |
+
":type:": "<class 'numpy.ndarray'>",
|
53 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
54 |
+
},
|
55 |
+
"_last_original_obs": {
|
56 |
+
":type:": "<class 'numpy.ndarray'>",
|
57 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAA28Qe2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACARkrKvAAAAADwmvG/AAAAAJZBrLsAAAAALSnnPwAAAACb95K9AAAAANzK8z8AAAAA+CEDPQAAAAALi9+/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlX5BNAAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgNnlAb0AAAAA3TrcvwAAAADYGA0+AAAAAGkuAEAAAAAAEHUEvgAAAAD4mto/AAAAAHjSCj0AAAAAev7ivwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANk4rTQAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICHYHw9AAAAANBR5r8AAAAArDjOPQAAAAAbW/0/AAAAAMqASr0AAAAA4aL8PwAAAACU8aW8AAAAADbR578AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAhvIU2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA1JILvgAAAACp4+2/AAAAAKzIkj0AAAAA4/b3PwAAAADB1XS9AAAAALi87z8AAAAAq/GDvAAAAAC7PPS/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
58 |
+
},
|
59 |
+
"_episode_num": 0,
|
60 |
+
"use_sde": true,
|
61 |
+
"sde_sample_freq": -1,
|
62 |
+
"_current_progress_remaining": 0.0,
|
63 |
+
"_stats_window_size": 100,
|
64 |
+
"ep_info_buffer": {
|
65 |
+
":type:": "<class 'collections.deque'>",
|
66 |
+
":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQIi+G912aDyMAWyUTegDjAF0lEdAqnenUvwmV3V9lChoBkdAkAaJBC2MKmgHTegDaAhHQKp99whGH591fZQoaAZHQIqF/Cl7+kxoB03oA2gIR0CqfgMF2V3VdX2UKGgGR0CRnREVWS2ZaAdN6ANoCEdAqoG/aFmFrXV9lChoBkdAi5Q1/2Cd0GgHTegDaAhHQKqERz4k/r11fZQoaAZHQI8kcA5q/M5oB03oA2gIR0Cqi8Gu9vjwdX2UKGgGR0CNeQC+UQkHaAdN6ANoCEdAqovSkfs/p3V9lChoBkdAkBuPyXlbNmgHTegDaAhHQKqRl7iQ1aZ1fZQoaAZHQJMUE+8oQWhoB03oA2gIR0CqlEBa1TisdX2UKGgGR0CTrI8HfMwDaAdN6ANoCEdAqppuIRAbAHV9lChoBkdAj62I3irDImgHTegDaAhHQKqaeZ2IO6N1fZQoaAZHQJPCZWMju8doB03oA2gIR0CqnipcPe54dX2UKGgGR0CTesfRNRFaaAdN6ANoCEdAqqCe6bvw3HV9lChoBkdAkhxKTfR/mWgHTegDaAhHQKqnAAuIyj51fZQoaAZHQJQa6YKIBR1oB03oA2gIR0CqpxDDKoycdX2UKGgGR0CUcoRr8BMjaAdN6ANoCEdAqqx2RA8jiXV9lChoBkdAlbKHCoCMgmgHTegDaAhHQKqwUYhMajx1fZQoaAZHQIOlGoaUA1hoB03oA2gIR0CqtsosI3R5dX2UKGgGR0CIUa2KEWZaaAdN6ANoCEdAqrbVlqagEnV9lChoBkdAlCEJgXuVo2gHTegDaAhHQKq6eduHerN1fZQoaAZHQJYgZdE9dNZoB03oA2gIR0CqvPvBrN4adX2UKGgGR0CWgBlchTwVaAdN6ANoCEdAqsMJh6SkkHV9lChoBkdAlf1kvwmVq2gHTegDaAhHQKrDFqfvnbJ1fZQoaAZHQJdICM98qnZoB03oA2gIR0Cqx7JYLb5/dX2UKGgGR0CXr8Vk+X7caAdN6ANoCEdAqstf5DZ13nV9lChoBkdAmG41anrIHWgHTegDaAhHQKrSvmYBvJl1fZQoaAZHQJlkwxsVLzxoB03oA2gIR0Cq0spuVHFxdX2UKGgGR0CZl9wudwvQaAdN6ANoCEdAqtZgZIg/1XV9lChoBkdAmh8U3sHB12gHTegDaAhHQKrYymWMS9N1fZQoaAZHQJhPHeenQ6ZoB03oA2gIR0Cq3t62fChwdX2UKGgGR0CcoC2Dg62faAdN6ANoCEdAqt7ppYcNpnV9lChoBkdAl3D8Q/X5FmgHTegDaAhHQKrigyCWeH11fZQoaAZHQJl6je7+T/1oB03oA2gIR0Cq5c5vUBn0dX2UKGgGR0CZmds052haaAdN6ANoCEdAqu5pNj9XLnV9lChoBkdAnkAbqt5lfGgHTegDaAhHQKrudBYV6/t1fZQoaAZHQJnqTiADq4ZoB03oA2gIR0Cq8hNwrDqGdX2UKGgGR0CXs82IwdsBaAdN6ANoCEdAqvSUY2sJY3V9lChoBkdAmf3LUXpGF2gHTegDaAhHQKr6uYTj/+91fZQoaAZHQJGVAiaAnUloB03oA2gIR0Cq+sUMgEEDdX2UKGgGR0Cb0hB+WnjyaAdN6ANoCEdAqv5Zn+Q2dnV9lChoBkdAm11yZBsyi2gHTegDaAhHQKsAu5XEIgN1fZQoaAZHQJXicg5imVJoB03oA2gIR0CrCZEIomXxdX2UKGgGR0Cc6iw9q1w6aAdN6ANoCEdAqwmil+EytXV9lChoBkdAmtUpmZmZmmgHTegDaAhHQKsOBMEA5rB1fZQoaAZHQJpZ3jLjghtoB03oA2gIR0CrEGjxCpm3dX2UKGgGR0CZUxUJfICEaAdN6ANoCEdAqxaEU7CBPXV9lChoBkdAl3I9G3F1jmgHTegDaAhHQKsWj6pHZsd1fZQoaAZHQJaGs2uPmxNoB03oA2gIR0CrGj1UuL75dX2UKGgGR0CV0quA7PpqaAdN6ANoCEdAqxyt2V3Ux3V9lChoBkdAltXlZTyau2gHTegDaAhHQKskPe/pMYd1fZQoaAZHQJjn5q33HrBoB03oA2gIR0CrJE/3WWhRdX2UKGgGR0Ce3WmNR3vAaAdN6ANoCEdAqyoFurIYFnV9lChoBkdAnr4Ddk8RtmgHTegDaAhHQKssm/1QIld1fZQoaAZHQJ07b7aZhKFoB03oA2gIR0CrMwd8iOebdX2UKGgGR0CdIoKEFnqWaAdN6ANoCEdAqzMTk8zQ/3V9lChoBkdAnEbvM4cWCWgHTegDaAhHQKs2t8MNMGp1fZQoaAZHQJ24Pzd1uBNoB03oA2gIR0CrOSUWEbo9dX2UKGgGR0CbmtqAz544aAdN6ANoCEdAqz/xYq5LAnV9lChoBkdAmuWy2QXAM2gHTegDaAhHQKtAAZCv5gx1fZQoaAZHQJzPNQ2uPmxoB03oA2gIR0CrRXIYvWYndX2UKGgGR0CaIJg/C66KaAdN6ANoCEdAq0j4Xj2i+XV9lChoBkdAnkzXqeK8+WgHTegDaAhHQKtPEX3QD3d1fZQoaAZHQJjFKfoRqXZoB03oA2gIR0CrTxy6+WWydX2UKGgGR0CauQiuMdcTaAdN6ANoCEdAq1LAT9KmK3V9lChoBkdAm2izo+wC82gHTegDaAhHQKtVLeIEbHZ1fZQoaAZHQJrhwVwgkkdoB03oA2gIR0CrW0xVAAyVdX2UKGgGR0Ccx4WY4Qz2aAdN6ANoCEdAq1tYa3qiXnV9lChoBkdAnLsx3/xUemgHTegDaAhHQKtf8SpzcRF1fZQoaAZHQJ4OVuP3i71oB03oA2gIR0CrY44U34sVdX2UKGgGR0CZoAnHNorXaAdN6ANoCEdAq2rVuHerMnV9lChoBkdAnEJ3KSxJNGgHTegDaAhHQKtq4P+XJHR1fZQoaAZHQJku2zC1qnFoB03oA2gIR0CrboTWf9P2dX2UKGgGR0CZowPTG5tnaAdN6ANoCEdAq3DvO2RaHXV9lChoBkdAmeQ87hegMGgHTegDaAhHQKt29h5PdmB1fZQoaAZHQJX9O0UoKD1oB03oA2gIR0CrdwFWn0kGdX2UKGgGR0CW+P433pOfaAdN6ANoCEdAq3q11MdtEXV9lChoBkdAnajRa9sabWgHTegDaAhHQKt+FGQ0XP91fZQoaAZHQJSr8XyiEg5oB03kAmgIR0CrgqJwsGxEdX2UKGgGR0CaoBf4AS39aAdN6ANoCEdAq4axw6ySm3V9lChoBkdAmf7yYgJTl2gHTegDaAhHQKuKUgDifg91fZQoaAZHQJ4M6FN+LFZoB03oA2gIR0CrjLEgfU4JdX2UKGgGR0Ce+zc81XNkaAdN6ANoCEdAq4+ifpUxVXV9lChoBkdAnOrgSBbwB2gHTegDaAhHQKuSu1w5vLp1fZQoaAZHQJh+q0Y0l7doB03oA2gIR0CrlmPYWcjJdX2UKGgGR0CXNXWp6yB1aAdN6ANoCEdAq5jQsqaw2XV9lChoBkdAmHOGQGOdXmgHTYUDaAhHQKubG9CeEqV1fZQoaAZHQJIsSq5sj3VoB03oA2gIR0CroaFmWdEtdX2UKGgGR0CZKyQMQVbiaAdN6ANoCEdAq6YUhePaMHV9lChoBkdAmIzSsKb8WWgHTegDaAhHQKuoi/Efkmx1fZQoaAZHQIWo6tV7x/doB03oA2gIR0Crqm5aV2RrdX2UKGgGR0CQ/v8yeqaPaAdN6ANoCEdAq67MD8tPHnV9lChoBkdAk7XocFQl8mgHTegDaAhHQKuygLQ5WBB1fZQoaAZHQJATAYCQtBhoB03oA2gIR0CrtQJkGzKLdX2UKGgGR0CXK612aDwpaAdN6ANoCEdAq7bWA7Ppp3V9lChoBkdAkRUXI2fkFWgHTegDaAhHQKu858c+7lJ1fZQoaAZHQIxN54yGi6BoB03oA2gIR0CrwlvK2a2GdX2UKGgGR0CSskKEnLJTaAdN6ANoCEdAq8TTGBFuvXV9lChoBkdAlSdK5TZQHmgHTegDaAhHQKvGp5M10kp1fZQoaAZHQJQUdHjIaLpoB03oA2gIR0Cryv3jdYW+dX2UKGgGR0CMEbLg4wRHaAdN6ANoCEdAq86ytPpIMHVlLg=="
|
67 |
+
},
|
68 |
+
"ep_success_buffer": {
|
69 |
+
":type:": "<class 'collections.deque'>",
|
70 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
71 |
+
},
|
72 |
+
"_n_updates": 62500,
|
73 |
+
"n_steps": 8,
|
74 |
+
"gamma": 0.99,
|
75 |
+
"gae_lambda": 0.9,
|
76 |
+
"ent_coef": 0.0,
|
77 |
+
"vf_coef": 0.4,
|
78 |
+
"max_grad_norm": 0.5,
|
79 |
+
"normalize_advantage": false,
|
80 |
+
"observation_space": {
|
81 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
82 |
+
":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
|
83 |
+
"dtype": "float32",
|
84 |
+
"_shape": [
|
85 |
+
28
|
86 |
+
],
|
87 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
|
88 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
|
89 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
90 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
91 |
+
"_np_random": null
|
92 |
+
},
|
93 |
+
"action_space": {
|
94 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
95 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
96 |
+
"dtype": "float32",
|
97 |
+
"_shape": [
|
98 |
+
8
|
99 |
+
],
|
100 |
+
"low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
|
101 |
+
"high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
|
102 |
+
"bounded_below": "[ True True True True True True True True]",
|
103 |
+
"bounded_above": "[ True True True True True True True True]",
|
104 |
+
"_np_random": null
|
105 |
+
},
|
106 |
+
"n_envs": 4
|
107 |
+
}
|
a2c-AntBulletEnv-v0/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6ce8dc08214c20f9ed23dad138ec8fadd81c0bfce2738c887c2b92f1ce8c9b82
|
3 |
+
size 56190
|
a2c-AntBulletEnv-v0/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e152f1240ab031eacca2f7ab25bd158ef33b0c24cfedacf315716218781d6bb6
|
3 |
+
size 56894
|
a2c-AntBulletEnv-v0/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-AntBulletEnv-v0/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.9.16
|
3 |
+
- Stable-Baselines3: 1.8.0
|
4 |
+
- PyTorch: 2.0.0+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fddd1e49c10>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fddd1e49ca0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fddd1e49d30>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fddd1e49dc0>", "_build": "<function ActorCriticPolicy._build at 0x7fddd1e49e50>", "forward": "<function ActorCriticPolicy.forward at 0x7fddd1e49ee0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fddd1e49f70>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fddd1e4c040>", "_predict": "<function ActorCriticPolicy._predict at 0x7fddd1e4c0d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fddd1e4c160>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fddd1e4c1f0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fddd1e4c280>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fddd1e4d140>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1681984301090248748, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAH6B3T/wNQ6/paLjPplVXz53JqQ+8FONP8km2r+xnbc9XoCJP+1Rq79IUJA+3pWoP8vGMr/1S4Y/IJqivbF7SsCVMwC/juOUPn0/MsCyvSw/vLzlP6hDGcAArke/huGKP3B+gT8AJ+Y+gFTOPh+Qmb9Htks++6udPzodRL4igYk/FF9gP7NcFb7A/ce+5jKRv3PQjT8yY38+5r/Xvuunsj8HVWu+IrijvllLaT/yxb68PROeP5EHWb9wjCq+tGoNP62Ejr/oQ3Y+TE0PP6COrb/yC32/EWAOwIBUzj6AYlU/llx3PUDF9T9rg8e/LFMHPwfzVj41kYg/znGrv0skbr9Zk5g/lvNpvgE6+r2ijGM+dwqiv1XrXzxOT2g/ZHUxOwB7UD99U6e/hHoVv0dx4z7THXY/V3hdPy59i7+hjsK7cH6BPwAn5j6AVM4+H5CZv2OCmr6Z75C+9XQMP40exT/XQHq/WeMSP+O8G74I/SS/5WALP3ZsL0Bmph2/0U2Tv8W0hT4lHARAG8wvP8XK4D/avjI/AQNCQEbWHj/4gka/DABjv20fTT/gJ4Q+ZtZjP/ILfb8AJ+Y+QNAewIBiVT+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAA28Qe2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACARkrKvAAAAADwmvG/AAAAAJZBrLsAAAAALSnnPwAAAACb95K9AAAAANzK8z8AAAAA+CEDPQAAAAALi9+/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlX5BNAAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgNnlAb0AAAAA3TrcvwAAAADYGA0+AAAAAGkuAEAAAAAAEHUEvgAAAAD4mto/AAAAAHjSCj0AAAAAev7ivwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANk4rTQAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICHYHw9AAAAANBR5r8AAAAArDjOPQAAAAAbW/0/AAAAAMqASr0AAAAA4aL8PwAAAACU8aW8AAAAADbR578AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAhvIU2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA1JILvgAAAACp4+2/AAAAAKzIkj0AAAAA4/b3PwAAAADB1XS9AAAAALi87z8AAAAAq/GDvAAAAAC7PPS/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQIi+G912aDyMAWyUTegDjAF0lEdAqnenUvwmV3V9lChoBkdAkAaJBC2MKmgHTegDaAhHQKp99whGH591fZQoaAZHQIqF/Cl7+kxoB03oA2gIR0CqfgMF2V3VdX2UKGgGR0CRnREVWS2ZaAdN6ANoCEdAqoG/aFmFrXV9lChoBkdAi5Q1/2Cd0GgHTegDaAhHQKqERz4k/r11fZQoaAZHQI8kcA5q/M5oB03oA2gIR0Cqi8Gu9vjwdX2UKGgGR0CNeQC+UQkHaAdN6ANoCEdAqovSkfs/p3V9lChoBkdAkBuPyXlbNmgHTegDaAhHQKqRl7iQ1aZ1fZQoaAZHQJMUE+8oQWhoB03oA2gIR0CqlEBa1TisdX2UKGgGR0CTrI8HfMwDaAdN6ANoCEdAqppuIRAbAHV9lChoBkdAj62I3irDImgHTegDaAhHQKqaeZ2IO6N1fZQoaAZHQJPCZWMju8doB03oA2gIR0CqnipcPe54dX2UKGgGR0CTesfRNRFaaAdN6ANoCEdAqqCe6bvw3HV9lChoBkdAkhxKTfR/mWgHTegDaAhHQKqnAAuIyj51fZQoaAZHQJQa6YKIBR1oB03oA2gIR0CqpxDDKoycdX2UKGgGR0CUcoRr8BMjaAdN6ANoCEdAqqx2RA8jiXV9lChoBkdAlbKHCoCMgmgHTegDaAhHQKqwUYhMajx1fZQoaAZHQIOlGoaUA1hoB03oA2gIR0CqtsosI3R5dX2UKGgGR0CIUa2KEWZaaAdN6ANoCEdAqrbVlqagEnV9lChoBkdAlCEJgXuVo2gHTegDaAhHQKq6eduHerN1fZQoaAZHQJYgZdE9dNZoB03oA2gIR0CqvPvBrN4adX2UKGgGR0CWgBlchTwVaAdN6ANoCEdAqsMJh6SkkHV9lChoBkdAlf1kvwmVq2gHTegDaAhHQKrDFqfvnbJ1fZQoaAZHQJdICM98qnZoB03oA2gIR0Cqx7JYLb5/dX2UKGgGR0CXr8Vk+X7caAdN6ANoCEdAqstf5DZ13nV9lChoBkdAmG41anrIHWgHTegDaAhHQKrSvmYBvJl1fZQoaAZHQJlkwxsVLzxoB03oA2gIR0Cq0spuVHFxdX2UKGgGR0CZl9wudwvQaAdN6ANoCEdAqtZgZIg/1XV9lChoBkdAmh8U3sHB12gHTegDaAhHQKrYymWMS9N1fZQoaAZHQJhPHeenQ6ZoB03oA2gIR0Cq3t62fChwdX2UKGgGR0CcoC2Dg62faAdN6ANoCEdAqt7ppYcNpnV9lChoBkdAl3D8Q/X5FmgHTegDaAhHQKrigyCWeH11fZQoaAZHQJl6je7+T/1oB03oA2gIR0Cq5c5vUBn0dX2UKGgGR0CZmds052haaAdN6ANoCEdAqu5pNj9XLnV9lChoBkdAnkAbqt5lfGgHTegDaAhHQKrudBYV6/t1fZQoaAZHQJnqTiADq4ZoB03oA2gIR0Cq8hNwrDqGdX2UKGgGR0CXs82IwdsBaAdN6ANoCEdAqvSUY2sJY3V9lChoBkdAmf3LUXpGF2gHTegDaAhHQKr6uYTj/+91fZQoaAZHQJGVAiaAnUloB03oA2gIR0Cq+sUMgEEDdX2UKGgGR0Cb0hB+WnjyaAdN6ANoCEdAqv5Zn+Q2dnV9lChoBkdAm11yZBsyi2gHTegDaAhHQKsAu5XEIgN1fZQoaAZHQJXicg5imVJoB03oA2gIR0CrCZEIomXxdX2UKGgGR0Cc6iw9q1w6aAdN6ANoCEdAqwmil+EytXV9lChoBkdAmtUpmZmZmmgHTegDaAhHQKsOBMEA5rB1fZQoaAZHQJpZ3jLjghtoB03oA2gIR0CrEGjxCpm3dX2UKGgGR0CZUxUJfICEaAdN6ANoCEdAqxaEU7CBPXV9lChoBkdAl3I9G3F1jmgHTegDaAhHQKsWj6pHZsd1fZQoaAZHQJaGs2uPmxNoB03oA2gIR0CrGj1UuL75dX2UKGgGR0CV0quA7PpqaAdN6ANoCEdAqxyt2V3Ux3V9lChoBkdAltXlZTyau2gHTegDaAhHQKskPe/pMYd1fZQoaAZHQJjn5q33HrBoB03oA2gIR0CrJE/3WWhRdX2UKGgGR0Ce3WmNR3vAaAdN6ANoCEdAqyoFurIYFnV9lChoBkdAnr4Ddk8RtmgHTegDaAhHQKssm/1QIld1fZQoaAZHQJ07b7aZhKFoB03oA2gIR0CrMwd8iOebdX2UKGgGR0CdIoKEFnqWaAdN6ANoCEdAqzMTk8zQ/3V9lChoBkdAnEbvM4cWCWgHTegDaAhHQKs2t8MNMGp1fZQoaAZHQJ24Pzd1uBNoB03oA2gIR0CrOSUWEbo9dX2UKGgGR0CbmtqAz544aAdN6ANoCEdAqz/xYq5LAnV9lChoBkdAmuWy2QXAM2gHTegDaAhHQKtAAZCv5gx1fZQoaAZHQJzPNQ2uPmxoB03oA2gIR0CrRXIYvWYndX2UKGgGR0CaIJg/C66KaAdN6ANoCEdAq0j4Xj2i+XV9lChoBkdAnkzXqeK8+WgHTegDaAhHQKtPEX3QD3d1fZQoaAZHQJjFKfoRqXZoB03oA2gIR0CrTxy6+WWydX2UKGgGR0CauQiuMdcTaAdN6ANoCEdAq1LAT9KmK3V9lChoBkdAm2izo+wC82gHTegDaAhHQKtVLeIEbHZ1fZQoaAZHQJrhwVwgkkdoB03oA2gIR0CrW0xVAAyVdX2UKGgGR0Ccx4WY4Qz2aAdN6ANoCEdAq1tYa3qiXnV9lChoBkdAnLsx3/xUemgHTegDaAhHQKtf8SpzcRF1fZQoaAZHQJ4OVuP3i71oB03oA2gIR0CrY44U34sVdX2UKGgGR0CZoAnHNorXaAdN6ANoCEdAq2rVuHerMnV9lChoBkdAnEJ3KSxJNGgHTegDaAhHQKtq4P+XJHR1fZQoaAZHQJku2zC1qnFoB03oA2gIR0CrboTWf9P2dX2UKGgGR0CZowPTG5tnaAdN6ANoCEdAq3DvO2RaHXV9lChoBkdAmeQ87hegMGgHTegDaAhHQKt29h5PdmB1fZQoaAZHQJX9O0UoKD1oB03oA2gIR0CrdwFWn0kGdX2UKGgGR0CW+P433pOfaAdN6ANoCEdAq3q11MdtEXV9lChoBkdAnajRa9sabWgHTegDaAhHQKt+FGQ0XP91fZQoaAZHQJSr8XyiEg5oB03kAmgIR0CrgqJwsGxEdX2UKGgGR0CaoBf4AS39aAdN6ANoCEdAq4axw6ySm3V9lChoBkdAmf7yYgJTl2gHTegDaAhHQKuKUgDifg91fZQoaAZHQJ4M6FN+LFZoB03oA2gIR0CrjLEgfU4JdX2UKGgGR0Ce+zc81XNkaAdN6ANoCEdAq4+ifpUxVXV9lChoBkdAnOrgSBbwB2gHTegDaAhHQKuSu1w5vLp1fZQoaAZHQJh+q0Y0l7doB03oA2gIR0CrlmPYWcjJdX2UKGgGR0CXNXWp6yB1aAdN6ANoCEdAq5jQsqaw2XV9lChoBkdAmHOGQGOdXmgHTYUDaAhHQKubG9CeEqV1fZQoaAZHQJIsSq5sj3VoB03oA2gIR0CroaFmWdEtdX2UKGgGR0CZKyQMQVbiaAdN6ANoCEdAq6YUhePaMHV9lChoBkdAmIzSsKb8WWgHTegDaAhHQKuoi/Efkmx1fZQoaAZHQIWo6tV7x/doB03oA2gIR0Crqm5aV2RrdX2UKGgGR0CQ/v8yeqaPaAdN6ANoCEdAq67MD8tPHnV9lChoBkdAk7XocFQl8mgHTegDaAhHQKuygLQ5WBB1fZQoaAZHQJATAYCQtBhoB03oA2gIR0CrtQJkGzKLdX2UKGgGR0CXK612aDwpaAdN6ANoCEdAq7bWA7Ppp3V9lChoBkdAkRUXI2fkFWgHTegDaAhHQKu858c+7lJ1fZQoaAZHQIxN54yGi6BoB03oA2gIR0CrwlvK2a2GdX2UKGgGR0CSskKEnLJTaAdN6ANoCEdAq8TTGBFuvXV9lChoBkdAlSdK5TZQHmgHTegDaAhHQKvGp5M10kp1fZQoaAZHQJQUdHjIaLpoB03oA2gIR0Cryv3jdYW+dX2UKGgGR0CMEbLg4wRHaAdN6ANoCEdAq86ytPpIMHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
Binary file (990 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 1286.0004039188636, "std_reward": 294.48796153377543, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-04-20T10:52:35.875131"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5ff3219cb6c4ce8da9e078f0628428b0cbb63194b390880745893b056095f4e0
|
3 |
+
size 2170
|