File size: 4,688 Bytes
405dc15
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
---
license: cc-by-nc-sa-4.0
base_model: InstaDeepAI/nucleotide-transformer-500m-1000g
tags:
- generated_from_trainer
metrics:
- precision
- recall
- accuracy
model-index:
- name: nucleotide-transformer-500m-1000g_ft_BioS2_1kbpHG19_DHSs_H3K27AC
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# nucleotide-transformer-500m-1000g_ft_BioS2_1kbpHG19_DHSs_H3K27AC

This model is a fine-tuned version of [InstaDeepAI/nucleotide-transformer-500m-1000g](https://huggingface.co/InstaDeepAI/nucleotide-transformer-500m-1000g) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8664
- F1 Score: 0.8336
- Precision: 0.8251
- Recall: 0.8424
- Accuracy: 0.8245
- Auc: 0.9047
- Prc: 0.9003

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch  | Step  | Validation Loss | F1 Score | Precision | Recall | Accuracy | Auc    | Prc    |
|:-------------:|:------:|:-----:|:---------------:|:--------:|:---------:|:------:|:--------:|:------:|:------:|
| 0.529         | 0.0841 | 500   | 0.4714          | 0.8056   | 0.7472    | 0.8740 | 0.7799   | 0.8519 | 0.8346 |
| 0.4706        | 0.1683 | 1000  | 0.4616          | 0.7843   | 0.8182    | 0.7531 | 0.7837   | 0.8702 | 0.8570 |
| 0.4663        | 0.2524 | 1500  | 0.4523          | 0.8218   | 0.7276    | 0.9439 | 0.7863   | 0.8782 | 0.8664 |
| 0.4404        | 0.3366 | 2000  | 0.4665          | 0.8218   | 0.7254    | 0.9478 | 0.7854   | 0.8827 | 0.8716 |
| 0.4456        | 0.4207 | 2500  | 0.4759          | 0.8275   | 0.7481    | 0.9259 | 0.7986   | 0.8924 | 0.8871 |
| 0.4422        | 0.5049 | 3000  | 0.4230          | 0.8282   | 0.7707    | 0.8949 | 0.8061   | 0.8861 | 0.8819 |
| 0.4275        | 0.5890 | 3500  | 0.4123          | 0.8286   | 0.8132    | 0.8446 | 0.8176   | 0.8946 | 0.8883 |
| 0.4234        | 0.6732 | 4000  | 0.4592          | 0.8256   | 0.7345    | 0.9426 | 0.7922   | 0.8961 | 0.8929 |
| 0.4296        | 0.7573 | 4500  | 0.3919          | 0.8369   | 0.8014    | 0.8756 | 0.8218   | 0.9019 | 0.8968 |
| 0.4189        | 0.8415 | 5000  | 0.4052          | 0.8345   | 0.7781    | 0.8997 | 0.8137   | 0.8981 | 0.8948 |
| 0.4233        | 0.9256 | 5500  | 0.3965          | 0.8389   | 0.8040    | 0.8769 | 0.8241   | 0.9024 | 0.8995 |
| 0.4089        | 1.0098 | 6000  | 0.4514          | 0.8382   | 0.7861    | 0.8978 | 0.8191   | 0.9044 | 0.9015 |
| 0.3368        | 1.0939 | 6500  | 0.4123          | 0.8428   | 0.8032    | 0.8865 | 0.8273   | 0.9067 | 0.9039 |
| 0.3194        | 1.1781 | 7000  | 0.5789          | 0.8284   | 0.7382    | 0.9436 | 0.7959   | 0.9006 | 0.8994 |
| 0.3444        | 1.2622 | 7500  | 0.4602          | 0.8283   | 0.8278    | 0.8288 | 0.8206   | 0.9007 | 0.8993 |
| 0.3405        | 1.3463 | 8000  | 0.4591          | 0.8375   | 0.7816    | 0.9020 | 0.8172   | 0.9008 | 0.8986 |
| 0.335         | 1.4305 | 8500  | 0.5358          | 0.8430   | 0.8141    | 0.8740 | 0.8300   | 0.9036 | 0.9015 |
| 0.3228        | 1.5146 | 9000  | 0.6466          | 0.7698   | 0.8828    | 0.6825 | 0.7869   | 0.9052 | 0.9035 |
| 0.3409        | 1.5988 | 9500  | 0.5102          | 0.8326   | 0.8362    | 0.8291 | 0.8260   | 0.9077 | 0.9055 |
| 0.339         | 1.6829 | 10000 | 0.4643          | 0.8373   | 0.8178    | 0.8578 | 0.8260   | 0.9076 | 0.9054 |
| 0.3345        | 1.7671 | 10500 | 0.4526          | 0.8456   | 0.7977    | 0.8997 | 0.8285   | 0.9091 | 0.9062 |
| 0.3325        | 1.8512 | 11000 | 0.5876          | 0.8356   | 0.7666    | 0.9181 | 0.8113   | 0.9020 | 0.8999 |
| 0.344         | 1.9354 | 11500 | 0.4975          | 0.8424   | 0.8131    | 0.8740 | 0.8294   | 0.9081 | 0.9068 |
| 0.3019        | 2.0195 | 12000 | 0.7725          | 0.8352   | 0.8406    | 0.8298 | 0.8290   | 0.9123 | 0.9114 |
| 0.2254        | 2.1037 | 12500 | 0.7338          | 0.7948   | 0.8647    | 0.7353 | 0.8018   | 0.9051 | 0.9042 |
| 0.2171        | 2.1878 | 13000 | 0.8664          | 0.8336   | 0.8251    | 0.8424 | 0.8245   | 0.9047 | 0.9003 |


### Framework versions

- Transformers 4.42.3
- Pytorch 2.3.0+cu121
- Datasets 2.18.0
- Tokenizers 0.19.0