--- library_name: transformers base_model: AIRI-Institute/gena-lm-bert-large-t2t tags: - generated_from_trainer metrics: - precision - recall - accuracy model-index: - name: gena-lm-bert-large-t2t_ft_BioS2_1kbpHG19_DHSs_H3K27AC_one_shot results: [] --- # gena-lm-bert-large-t2t_ft_BioS2_1kbpHG19_DHSs_H3K27AC_one_shot This model is a fine-tuned version of [AIRI-Institute/gena-lm-bert-large-t2t](https://huggingface.co/AIRI-Institute/gena-lm-bert-large-t2t) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.0203 - F1 Score: 0.7812 - Precision: 0.8065 - Recall: 0.7576 - Accuracy: 0.7627 - Auc: 0.8205 - Prc: 0.8517 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 Score | Precision | Recall | Accuracy | Auc | Prc | |:-------------:|:-------:|:----:|:---------------:|:--------:|:---------:|:------:|:--------:|:------:|:------:| | 0.4524 | 8.3333 | 500 | 0.6291 | 0.8308 | 0.8438 | 0.8182 | 0.8136 | 0.8502 | 0.8700 | | 0.2158 | 16.6667 | 1000 | 1.0203 | 0.7812 | 0.8065 | 0.7576 | 0.7627 | 0.8205 | 0.8517 | ### Framework versions - Transformers 4.46.0.dev0 - Pytorch 2.4.1+cu121 - Datasets 2.18.0 - Tokenizers 0.20.0