--- base_model: AIRI-Institute/gena-lm-bert-large-t2t tags: - generated_from_trainer metrics: - precision - recall - accuracy model-index: - name: gena-lm-bert-large-t2t_ft_BioS2_1kbpHG19_DHSs_H3K27AC results: [] --- # gena-lm-bert-large-t2t_ft_BioS2_1kbpHG19_DHSs_H3K27AC This model is a fine-tuned version of [AIRI-Institute/gena-lm-bert-large-t2t](https://huggingface.co/AIRI-Institute/gena-lm-bert-large-t2t) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3605 - F1 Score: 0.8722 - Precision: 0.8099 - Recall: 0.9449 - Accuracy: 0.8549 - Auc: 0.9416 - Prc: 0.9432 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 Score | Precision | Recall | Accuracy | Auc | Prc | |:-------------:|:------:|:-----:|:---------------:|:--------:|:---------:|:------:|:--------:|:------:|:------:| | 0.5815 | 0.0840 | 500 | 0.5396 | 0.7416 | 0.8093 | 0.6843 | 0.7500 | 0.8334 | 0.8249 | | 0.4864 | 0.1680 | 1000 | 0.4740 | 0.8142 | 0.7803 | 0.8513 | 0.7964 | 0.8687 | 0.8579 | | 0.4701 | 0.2520 | 1500 | 0.5119 | 0.7828 | 0.8415 | 0.7317 | 0.7872 | 0.8688 | 0.8706 | | 0.4654 | 0.3360 | 2000 | 0.4932 | 0.8274 | 0.7359 | 0.9449 | 0.7934 | 0.8922 | 0.8869 | | 0.4376 | 0.4200 | 2500 | 0.4289 | 0.8365 | 0.8007 | 0.8756 | 0.8206 | 0.8984 | 0.8962 | | 0.423 | 0.5039 | 3000 | 0.4881 | 0.8366 | 0.7595 | 0.9311 | 0.8093 | 0.9056 | 0.9034 | | 0.4226 | 0.5879 | 3500 | 0.3795 | 0.8504 | 0.8110 | 0.8939 | 0.8352 | 0.9131 | 0.9133 | | 0.4035 | 0.6719 | 4000 | 0.3801 | 0.8491 | 0.7886 | 0.9196 | 0.8287 | 0.9186 | 0.9217 | | 0.4041 | 0.7559 | 4500 | 0.3687 | 0.8553 | 0.8172 | 0.8971 | 0.8409 | 0.9226 | 0.9244 | | 0.3948 | 0.8399 | 5000 | 0.4052 | 0.8421 | 0.7465 | 0.9657 | 0.8102 | 0.9290 | 0.9314 | | 0.3914 | 0.9239 | 5500 | 0.4325 | 0.8483 | 0.7639 | 0.9538 | 0.8213 | 0.9294 | 0.9319 | | 0.3801 | 1.0079 | 6000 | 0.3344 | 0.8677 | 0.8623 | 0.8731 | 0.8604 | 0.9339 | 0.9368 | | 0.3334 | 1.0919 | 6500 | 0.3710 | 0.8695 | 0.8301 | 0.9128 | 0.8564 | 0.9337 | 0.9368 | | 0.3567 | 1.1759 | 7000 | 0.3799 | 0.8672 | 0.8740 | 0.8606 | 0.8619 | 0.9372 | 0.9398 | | 0.3528 | 1.2599 | 7500 | 0.3344 | 0.8698 | 0.8609 | 0.8788 | 0.8621 | 0.9378 | 0.9404 | | 0.3542 | 1.3439 | 8000 | 0.3936 | 0.8769 | 0.8249 | 0.9359 | 0.8623 | 0.9393 | 0.9405 | | 0.3497 | 1.4279 | 8500 | 0.3461 | 0.8730 | 0.8586 | 0.8878 | 0.8646 | 0.9393 | 0.9403 | | 0.3379 | 1.5118 | 9000 | 0.4219 | 0.8683 | 0.7987 | 0.9513 | 0.8488 | 0.9408 | 0.9417 | | 0.347 | 1.5958 | 9500 | 0.3649 | 0.8746 | 0.8491 | 0.9016 | 0.8644 | 0.9391 | 0.9409 | | 0.3513 | 1.6798 | 10000 | 0.3315 | 0.8655 | 0.8944 | 0.8385 | 0.8634 | 0.9414 | 0.9438 | | 0.3259 | 1.7638 | 10500 | 0.3605 | 0.8722 | 0.8099 | 0.9449 | 0.8549 | 0.9416 | 0.9432 | ### Framework versions - Transformers 4.42.3 - Pytorch 2.3.0+cu121 - Datasets 2.18.0 - Tokenizers 0.19.0