--- license: mit base_model: microsoft/deberta-v3-small tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: results results: [] --- # results This model is a fine-tuned version of [microsoft/deberta-v3-small](https://huggingface.co/microsoft/deberta-v3-small) on the KMC dataset. It achieves the following results on the evaluation set: - Loss: 0.0556 - Accuracy: 0.8722 - F1: 0.8849 - Precision: 0.8950 - Recall: 0.8750 ## Model description (More information needed) ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | 0.0894 | 1.0 | 1633 | 0.0817 | 0.7508 | 0.8072 | 0.8774 | 0.7474 | | 0.059 | 2.0 | 3266 | 0.0620 | 0.8264 | 0.8520 | 0.8815 | 0.8243 | | 0.0429 | 3.0 | 4899 | 0.0531 | 0.8563 | 0.8751 | 0.8947 | 0.8563 | | 0.032 | 4.0 | 6532 | 0.0547 | 0.8704 | 0.8838 | 0.8976 | 0.8705 | | 0.0253 | 5.0 | 8165 | 0.0556 | 0.8722 | 0.8849 | 0.8950 | 0.8750 | ### Framework versions - Transformers 4.41.2 - Pytorch 2.3.0+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1