File size: 4,171 Bytes
734e414
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
from typing import Optional, Iterator, Callable, Any

import torch
from datasets import load_dataset, concatenate_datasets
from transformers import AutoTokenizer


def load_text_dataset(tokenizer: AutoTokenizer,
                      kind: str,
                      path: str,
                      name: Optional[str]=None,
                      data_dir: Optional[str]=None,
                      data_files: Optional[str]=None,
                      keep_in_memory: bool=False,
                      revision: Optional[str]=None,
                      split: str='train',
                      num_proc: Optional[int]=None,
                      format: Optional[Callable|str]=None) -> Any:
    assert isinstance(format, str) or callable(format), f'{path=} {format=}'
    assert kind == 'base'

    dataset = load_dataset(path=path,
                           name=name,
                           data_dir=data_dir,
                           data_files=data_files,
                           keep_in_memory=keep_in_memory,
                           revision=revision,
                           split=split,
                           trust_remote_code=True,
                           num_proc=num_proc)

    EOS_TOKEN = tokenizer.eos_token

    def format_dataset(batch):
        nonlocal EOS_TOKEN
        nonlocal format
        texts: list = []
        rows = [dict(zip(batch.keys(), values)) for values in zip(*batch.values())]

        if callable(format):
            for row in rows:
                # print(f'{row=}')
                text = format(row)

                if not text:
                    text = '[NONE]'

                text += EOS_TOKEN
                texts.append(text)
        else:
            for row in rows:
                # print(f'{row=}')
                text = format.format(**row)

                if not text:
                    text = '[NONE]'

                text += EOS_TOKEN
                texts.append(text)

        return {'text': texts}

    dataset = dataset.map(format_dataset, batched=True)
    return dataset


def load_chat_dataset(tokenizer: AutoTokenizer,
                      kind: str,
                      path: str,
                      name: Optional[str]=None,
                      data_dir: Optional[str]=None,
                      data_files: Optional[str]=None,
                      keep_in_memory: bool=False,
                      revision: Optional[str]=None,
                      split: str='train',
                      num_proc: Optional[int]=None,
                      field: Optional[str]=None,
                      transform: Optional[Callable]=None) -> Any:
    assert kind == 'instruct'

    dataset = load_dataset(path=path,
                           name=name,
                           data_dir=data_dir,
                           data_files=data_files,
                           keep_in_memory=keep_in_memory,
                           revision=revision,
                           split=split,
                           trust_remote_code=True,
                           num_proc=num_proc)

    EOS_TOKEN = tokenizer.eos_token

    def format_dataset(batch):
        nonlocal EOS_TOKEN
        nonlocal tokenizer
        nonlocal field
        nonlocal transform
        texts: list = []
        rows = [dict(zip(batch.keys(), values)) for values in zip(*batch.values())]

        if callable(transform):
            for row in rows:
                if field:
                    messages = transform(row[field])
                else:
                    messages = transform(row)

                text = tokenizer.apply_chat_template(messages, tokenize=False)
                text += EOS_TOKEN
                texts.append(text)
        else:
            for row in rows:
                if field:
                    messages = row[field]
                else:
                    raise ValueError(field)

                text = tokenizer.apply_chat_template(messages, tokenize=False)
                text += EOS_TOKEN
                texts.append(text)

        return {'text': texts}

    dataset = dataset.map(format_dataset, batched=True)
    return dataset