File size: 4,171 Bytes
734e414 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 |
from typing import Optional, Iterator, Callable, Any
import torch
from datasets import load_dataset, concatenate_datasets
from transformers import AutoTokenizer
def load_text_dataset(tokenizer: AutoTokenizer,
kind: str,
path: str,
name: Optional[str]=None,
data_dir: Optional[str]=None,
data_files: Optional[str]=None,
keep_in_memory: bool=False,
revision: Optional[str]=None,
split: str='train',
num_proc: Optional[int]=None,
format: Optional[Callable|str]=None) -> Any:
assert isinstance(format, str) or callable(format), f'{path=} {format=}'
assert kind == 'base'
dataset = load_dataset(path=path,
name=name,
data_dir=data_dir,
data_files=data_files,
keep_in_memory=keep_in_memory,
revision=revision,
split=split,
trust_remote_code=True,
num_proc=num_proc)
EOS_TOKEN = tokenizer.eos_token
def format_dataset(batch):
nonlocal EOS_TOKEN
nonlocal format
texts: list = []
rows = [dict(zip(batch.keys(), values)) for values in zip(*batch.values())]
if callable(format):
for row in rows:
# print(f'{row=}')
text = format(row)
if not text:
text = '[NONE]'
text += EOS_TOKEN
texts.append(text)
else:
for row in rows:
# print(f'{row=}')
text = format.format(**row)
if not text:
text = '[NONE]'
text += EOS_TOKEN
texts.append(text)
return {'text': texts}
dataset = dataset.map(format_dataset, batched=True)
return dataset
def load_chat_dataset(tokenizer: AutoTokenizer,
kind: str,
path: str,
name: Optional[str]=None,
data_dir: Optional[str]=None,
data_files: Optional[str]=None,
keep_in_memory: bool=False,
revision: Optional[str]=None,
split: str='train',
num_proc: Optional[int]=None,
field: Optional[str]=None,
transform: Optional[Callable]=None) -> Any:
assert kind == 'instruct'
dataset = load_dataset(path=path,
name=name,
data_dir=data_dir,
data_files=data_files,
keep_in_memory=keep_in_memory,
revision=revision,
split=split,
trust_remote_code=True,
num_proc=num_proc)
EOS_TOKEN = tokenizer.eos_token
def format_dataset(batch):
nonlocal EOS_TOKEN
nonlocal tokenizer
nonlocal field
nonlocal transform
texts: list = []
rows = [dict(zip(batch.keys(), values)) for values in zip(*batch.values())]
if callable(transform):
for row in rows:
if field:
messages = transform(row[field])
else:
messages = transform(row)
text = tokenizer.apply_chat_template(messages, tokenize=False)
text += EOS_TOKEN
texts.append(text)
else:
for row in rows:
if field:
messages = row[field]
else:
raise ValueError(field)
text = tokenizer.apply_chat_template(messages, tokenize=False)
text += EOS_TOKEN
texts.append(text)
return {'text': texts}
dataset = dataset.map(format_dataset, batched=True)
return dataset
|