File size: 5,340 Bytes
734e414
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
import gc
from typing import Optional, Iterator, Callable

import torch
from datasets import load_dataset
from litgpt.tokenizer import Tokenizer
from transformers import AutoTokenizer


def batch_text_iterator(kind: str,
                        path: str,
                        name: Optional[str]=None,
                        data_dir: Optional[str]=None,
                        data_files: Optional[str]=None,
                        keep_in_memory: bool=False,
                        revision: Optional[str]=None,
                        split: str='train',
                        num_proc: Optional[int]=None,
                        format: Optional[Callable|str]=None) -> Iterator[str]:
    assert isinstance(format, str) or callable(format), f'{path=} {format=}'
    assert kind == 'base'

    dataset = load_dataset(path=path,
                           name=name,
                           data_dir=data_dir,
                           data_files=data_files,
                           keep_in_memory=keep_in_memory,
                           revision=revision,
                           split=split,
                           trust_remote_code=True,
                           num_proc=num_proc)

    if callable(format):
        for row in dataset:
            text = format(row)

            if not text:
                continue

            yield text
    else:
        for row in dataset:
            text = format.format(**row)

            if not text:
                continue

            yield text

    del dataset
    gc.collect()


def batch_chat_iterator(kind: str,
                        path: str,
                        name: Optional[str]=None,
                        data_dir: Optional[str]=None,
                        data_files: Optional[str]=None,
                        keep_in_memory: bool=False,
                        revision: Optional[str]=None,
                        split: str='train',
                        num_proc: Optional[int]=None,
                        field: Optional[str]=None,
                        transform: Optional[Callable]=None) -> Iterator[list[dict[str, str]]]:
    assert kind == 'instruct'

    dataset = load_dataset(path=path,
                           name=name,
                           data_dir=data_dir,
                           data_files=data_files,
                           keep_in_memory=keep_in_memory,
                           revision=revision,
                           split=split,
                           trust_remote_code=True,
                           num_proc=num_proc)

    if callable(transform):
        for row in dataset:
            if field:
                messages = transform(row[field])
            else:
                messages = transform(row)

            if not messages:
                continue

            yield messages
    else:
        for row in dataset:
            if field:
                messages = row[field]
            else:
                raise ValueError(field)

            if not messages:
                continue

            yield messages

    del dataset
    gc.collect()


# NOTE: used only by tokenizer trainer
def batch_dataset_iterator(dataset_config: dict) -> Iterator[str]:
    if dataset_config['kind'] == 'base':
        for text in batch_text_iterator(**dataset_config):
           yield text
    elif dataset_config['kind'] == 'instruct':
        for messages in batch_chat_iterator(**dataset_config):
            text = '\n'.join(n['content'] for n in messages)
            yield text


def tokenize_text_fn(dataset_config: dict, hf_tokenizer: AutoTokenizer, tokenizer: Tokenizer) -> Iterator[torch.Tensor]:
    for text in batch_text_iterator(**dataset_config):
        text_ids: torch.Tensor = tokenizer.encode(text, bos=False, eos=True)
        yield text_ids


def tokenize_chat_fn(dataset_config: dict, hf_tokenizer: AutoTokenizer, tokenizer: Tokenizer) -> Iterator[torch.Tensor]:
    for messages in batch_chat_iterator(**dataset_config):
        text: str = hf_tokenizer.apply_chat_template(messages, tokenize=False)
        text_ids: torch.Tensor = tokenizer.encode(text, bos=False, eos=False)
        yield text_ids


def tokenize_fn(dataset_config: dict, min_len: int, max_len: int, hf_tokenizer: AutoTokenizer, tokenizer: Tokenizer) -> Iterator[torch.Tensor]:
    if dataset_config['kind'] == 'base':
        for text in batch_text_iterator(**dataset_config):
            try:
                text_ids: torch.Tensor = tokenizer.encode(text, bos=False, eos=True)
            except Exception as e:
                print(f'Skip base raw: {e=} {type(text)=} {text=}')
                continue

            if min_len <= len(text_ids) <= max_len:
                yield text_ids
    elif dataset_config['kind'] == 'instruct':
        for messages in batch_chat_iterator(**dataset_config):
            try:
                text: str = hf_tokenizer.apply_chat_template(messages, tokenize=False)
                text_ids: torch.Tensor = tokenizer.encode(text, bos=False, eos=False)
            except Exception as e:
                print(f'Skip instruct row: {e=} {type(messages)=} {messages=}')
                continue

            if min_len <= len(text_ids) <= max_len:
                yield text_ids
    else:
        raise ValueError(dataset_config['kind'])