File size: 8,063 Bytes
734e414
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
import json


roles_map = {
    'system': 'system',
    'user': 'user',
    'human': 'user',
    'assistant': 'assistant',
    'gpt': 'assistant',
    'AI': 'assistant',
}


pretrain_instruct_datasets = [
    #
    # general instructs
    #
    # 138 MB, 205,568
    {'kind': 'instruct', 'path': 'CohereForAI/aya_dataset', 'transform': lambda r: [
        {'role': 'user', 'content': r['inputs']},
        {'role': 'assistant', 'content': r['targets']},
    ]},

    # ~3 GB, 4,976,850
    *[
        {'kind': 'instruct', 'path': 'saillab/taco-datasets', 'data_dir': name, 'split': 'train', 'transform': lambda r: [
            {'role': 'system', 'content': r['instruction']},
            {'role': 'user', 'content': r['input']},
            {'role': 'assistant', 'content': r['output']},
        ]}
        for name in [
            'multilingual-instruction-tuning-dataset /multilingual-alpaca-52k-gpt-4',
            'multilingual-instruction-tuning-dataset /multilinugal-dolly-15k',
        ]
    ],

    # 1.48 GB, 1,420,909
    # mlabonne/open-perfectblend
    #   meta-math/MetaMathQA 	395,000
    #   openbmb/UltraInteract_sft 	288,579
    #   HuggingFaceH4/ultrachat_200k 	207,865
    #   microsoft/orca-math-word-problems-200k 	200,035
    #   HuggingFaceH4/ultrafeedback_binarized 	187,405
    #   theblackcat102/evol-codealpaca-v1 	111,272
    #   Post-training-Data-Flywheel/AutoIF-instruct-61k 	61,492
    #   mlabonne/lmsys-arena-human-preference-55k-sharegpt 	57,362
    *[
        {'kind': 'instruct', 'path': 'mlabonne/open-perfectblend', 'split': f'train[{i}%:{i + 10}%]', 'field': 'conversations', 'transform': lambda msgs: [
            {'role': roles_map[m['from']], 'content': m['value']}
            for m in msgs
        ]}
        for i in range(0, 100, 10)
    ],
    # 4.58 GB, 1,752,473
    # arcee-ai/The-Tome
    # - arcee-ai/infini-instruct-top-500k (BAAI/Infinity-Instruct)
    # - TIGER-Lab/WebInstructSub (top-500k) - IGNORE
    # - jondurbin/airoboros-3.2
    # - gardner/glaive-function-calling-v2-sharegpt
    # - arcee-ai/reasoning-sharegpt (SkunkworksAI/reasoning-0.01)
    # - arcee-ai/self-instruct-sharegpt (bigcode/self-oss-instruct-sc2-exec-filter-50k)
    # - cognitivecomputations/ultrainteract_trajectories_sharegpt
    # - cognitivecomputations/SystemChat-2.0
    # - arcee-ai/qwen2-72b-magpie-en
    *[
        {'kind': 'instruct', 'path': 'arcee-ai/The-Tome', 'split': f'train[{i}%:{i + 10}%]', 'field': 'conversations', 'transform': lambda msgs: [
            {'role': roles_map[m['from']], 'content': m['value']}
            for m in msgs
        ]}
        for i in range(0, 100, 10)
    ],
    # 2.48 GB, 5,808,694
    # rombodawg/Everything_Instruct_Multilingual
    # Science:
    #     antiven0m/physical-reasoning-dpoScience
    #     LawalAfeez/science-dataset
    # Social media:
    #     Kyle1668/AG-Tweets
    #     euclaise/reddit-instruct-curated
    # General Knowledge:
    #     NousResearch/CharacterCodex_Characters
    #     jstet/quotes-500k_Famous_Quotes
    #     FronkonGames/steam-games-dataset_Video_Games
    #     totuta_youtube_subs_howto100M_HowTo
    # Multi-lingual:
    #     Amani27/massive_translation_dataset
    #     udmurtNLP/udmurt-russian-english-labse
    #     grosenthal/latin_english
    #     msarmi9/korean-english-multitarget-ted-talks-task
    #     HaiderSultanArc/MT-Urdu-English_Translate
    #     Garsa3112/ChineseEnglishTranslationDataset
    # Cooking:
    #     andrewsiah/se_cooking_preference_sft
    #     Hieu-Phamkaggle/food_recipes
    # Writing:
    #     shahules786/PoetryFoundationData
    #     euclaise/writingprompts
    #     qwedsacf/ivypanda-essaysEssay
    # Medicine:
    #     keivalya/MedQuad-MedicalQnADataset
    #     nuvocare/MSD
    # History:
    #     ambrosfitz10k/history_data_v4
    # Law:
    #     dzunggg/legal-qa-v1
    # Role-Play:
    #     roleplay4/fun_CoupleRP
    #     Undi95andrijdavid/roleplay-conversation-sharegpt
    # News:
    #     RealTimeData/bbc_news_alltime
    # Coding: (rombodawg/code_bagel)
    #     layoric/tiny-codes-alpaca
    #     glaiveai/glaive-code-assistant-v3
    #     ajibawa-2023/Code-290k-ShareGPT
    #     chargoddard/commitpack-ft-instruct-rated
    #     iamtarun/code_instructions_120k_alpaca
    #     ise-uiuc/Magicoder-Evol-Instruct-110K
    #     cognitivecomputations/dolphin-coder
    #     nickrosh/Evol-Instruct-Code-80k-v1
    #     coseal/CodeUltraFeedback_binarized
    #     CyberNative/Code_Vulnerability_Security_DPO
    # Math: (rombodawg/code_bagel)
    #     TIGER-Lab/MathInstruct
    # Function calling: (rombodawg/code_bagel)
    #     glaiveai/glaive-function-calling-v2
    # General Instruct: (rombodawg/OpenHermes-2.5-Uncensored)
    #     teknium/OpenHermes-2.5
    *[
        {'kind': 'instruct', 'path': 'rombodawg/Everything_Instruct_Multilingual', 'split': f'train[{i}%:{i + 10}%]', 'transform': lambda r: [
            {'role': 'system', 'content': r['instruction']},
            {'role': 'user', 'content': r['input']},
            {'role': 'assistant', 'content': r['output']},
        ]}
        for i in range(0, 100, 10)
    ],
    # 1.41 GB, 939,343
    # allenai/tulu-3-sft-mixture
    #   CoCoNot (ODC-BY-1.0), 10,983 prompts (Brahman et al., 2024)
    #   FLAN v2 via ai2-adapt-dev/flan_v2_converted, 89,982 prompts (Longpre et al., 2023)
    #   No Robots (CC-BY-NC-4.0), 9,500 prompts (Rajani et al. 2023)
    #   OpenAssistant Guanaco (Apache 2.0), 7,132 prompts (Kopf et al., 2024)
    #   Tulu 3 Persona MATH (ODC-BY-1.0), 149,960 prompts
    #   Tulu 3 Persona GSM (ODC-BY-1.0), 49,980 prompts
    #   Tulu 3 Persona Python (ODC-BY-1.0), 34,999 prompts
    #   Tulu 3 Persona Algebra (ODC-BY-1.0), 20,000 prompts
    #   Tulu 3 Persona IF (ODC-BY-1.0), 29,980 prompts
    #   NuminaMath-TIR (Apache 2.0), 64,312 prompts (Beeching et al. 2024)
    #   Tulu 3 WildGuardMix (Apache 2.0), 50,000 prompts (Han et al., 2024)
    #   Tulu 3 WildJailbreak (ODC-BY-1.0), 50,000 prompts (Wildteaming, 2024)
    #   Tulu 3 Hardcoded (CC-BY-4.0), 240 prompts
    #   Aya (Apache 2.0), 100,000 prompts (Singh et al., 2024)
    #   WildChat GPT-4 (ODC-BY-1.0), 100,000 prompts (Zhao et al., 2024)
    #   TableGPT (MIT), 5,000 prompts (Zha et al., 2023)
    #   SciRIFF (ODC-BY-1.0), 10,000 prompts (Wadden et al., 2024)
    #   Evol CodeAlpaca (Apache 2.0), 107,276 prompts (Luo et al., 2023)
    *[
        {'kind': 'instruct', 'path': 'allenai/tulu-3-sft-mixture', 'split': f'train[{i}%:{i + 10}%]', 'field': 'messages'}
        for i in range(0, 100, 10)
    ],

    #
    # tool/function calling
    #
    # 65.7 MB, 11,578
    {'kind': 'instruct', 'path': 'NousResearch/hermes-function-calling-v1', 'field': 'conversations', 'transform': lambda msgs: [
        {'role': roles_map[m['from']], 'content': m['value']}
        for m in msgs
    ]},

    #
    # agent
    #
    # 1.51 GB, 485,874
    *[
        {'kind': 'instruct', 'path': 'arcee-ai/agent-data', 'split': f'train[{i}%:{i + 10}%]', 'field': 'conversations', 'transform': lambda msgs: [
            {'role': roles_map[m['from']], 'content': m['value']}
            for m in msgs
        ]}
        for i in range(0, 100, 10)
    ],
    # 2.21 GB, 1,046,410
    *[
        {'kind': 'instruct', 'path': 'microsoft/orca-agentinstruct-1M-v1', 'split': split, 'field': 'messages', 'transform': lambda msgs: json.loads(msgs)}
        for split in [
            'creative_content', 'text_modification', 'struct2text_flow', 'rc', 'rag',
            'text_extraction', 'mcq', 'follow_up', 'analytical_reasoning', 'fermi', 'fs_cot_flow',
            'code_', 'brain_teaser', 'text_classification', 'open_domain_qa',
        ]
    ],

    #
    # general instructs
    #
    # 1.52 GB, 214k (3.98 GB, 814,334)
    {'kind': 'instruct', 'path': 'cognitivecomputations/dolphin-r1', 'data_files': 'dolphin-r1-nonreasoning.jsonl', 'split': 'train', 'field': 'messages'},
    # 4.15 GB, 2,197,730
    {'kind': 'instruct', 'path': 'HuggingFaceTB/smoltalk', 'name': 'all', 'field': 'messages'},
]