tahirjm commited on
Commit
f5db5c2
·
verified ·
1 Parent(s): 14c6fc7

Upload model.py with huggingface_hub

Browse files
Files changed (1) hide show
  1. model.py +132 -0
model.py ADDED
@@ -0,0 +1,132 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers import PretrainedConfig, PreTrainedModel, AutoModel, AutoConfig
2
+ import torch
3
+ import os
4
+ import json
5
+ from huggingface_hub import snapshot_download
6
+
7
+ class IndicASRConfig(PretrainedConfig):
8
+ model_type = "iasr"
9
+
10
+ def __init__(self, ts_folder: str = "path", BLANK_ID: int = 256, RNNT_MAX_SYMBOLS: int = 10,
11
+ PRED_RNN_LAYERS: int = 2, PRED_RNN_HIDDEN_DIM: int = 640, SOS: int = 5632, **kwargs):
12
+ super().__init__(**kwargs)
13
+ self.ts_folder = ts_folder
14
+ self.BLANK_ID = BLANK_ID
15
+ self.RNNT_MAX_SYMBOLS = RNNT_MAX_SYMBOLS
16
+ self.PRED_RNN_LAYERS = PRED_RNN_LAYERS
17
+ self.PRED_RNN_HIDDEN_DIM = PRED_RNN_HIDDEN_DIM
18
+ self.SOS = SOS
19
+
20
+ class IndicASRModel(PreTrainedModel):
21
+ config_class = IndicASRConfig
22
+
23
+ def __init__(self, config):
24
+ super().__init__(config)
25
+ # self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
26
+
27
+ # Load model components
28
+ self.models = {}
29
+ names = ['preprocessor','encoder', 'ctc_decoder', 'rnnt_decoder', 'joint_enc', 'joint_pred', 'joint_pre_net'] + \
30
+ [f'joint_post_net_{z}' for z in ['as', 'bn', 'brx', 'doi', 'gu', 'hi', 'kn', 'kok', 'ks', 'mai', 'ml', 'mni', 'mr', 'ne', 'or', 'pa', 'sa', 'sat', 'sd', 'ta', 'te', 'ur']]
31
+
32
+ for n in names:
33
+ component_name = f'{config.ts_folder}/assets/{n}.ts'
34
+ if os.path.exists(component_name):
35
+ self.models[n] = torch.jit.load(component_name)
36
+ else:
37
+ self.models[n] = None
38
+ print(f'Failed to load {component_name}')
39
+
40
+ # Load vocab and language masks
41
+ with open(f'{config.ts_folder}/assets/vocab.json') as reader:
42
+ self.vocab = json.load(reader)
43
+
44
+ with open(f'{config.ts_folder}/assets/language_masks.json') as reader:
45
+ self.language_masks = json.load(reader)
46
+
47
+ def forward(self, wav, lang, decoding='ctc'):
48
+ encoder_outputs, encoded_lengths = self.encode(wav)
49
+ if decoding == 'ctc':
50
+ return self._ctc_decode(encoder_outputs, encoded_lengths, lang)
51
+ if decoding == 'rnnt':
52
+ return self._rnnt_decode(encoder_outputs, encoded_lengths, lang)
53
+
54
+ def encode(self, wav):
55
+ audio_signal, length = self.models['preprocessor'](input_signal=wav, length=torch.tensor([wav.shape[-1]]))
56
+ outputs, encoded_lengths = self.models['encoder'](audio_signal=audio_signal, length=length)
57
+ return outputs, encoded_lengths
58
+
59
+ def _ctc_decode(self, encoder_outputs, encoded_lengths, lang):
60
+ logprobs = self.models['ctc_decoder'](encoder_output=encoder_outputs)
61
+ logprobs = logprobs[:,:,self.language_masks[lang]].log_softmax(dim=-1)
62
+ indices = torch.argmax(logprobs[0],dim=-1)
63
+ collapsed_indices = torch.unique_consecutive(indices, dim=-1)
64
+ return ''.join([self.vocab[lang][x] for x in collapsed_indices if x != self.config.BLANK_ID]).replace('▁',' ').strip()
65
+
66
+ def _rnnt_decode(self, encoder_outputs, encoded_lengths, lang):
67
+ joint_enc = self.models['joint_enc'](encoder_outputs.transpose(1, 2))
68
+ hyp = [self.config.SOS]
69
+ prev_dec_state = (torch.zeros(self.config.PRED_RNN_LAYERS,1,self.config.PRED_RNN_HIDDEN_DIM),
70
+ torch.zeros(self.config.PRED_RNN_LAYERS,1,self.config.PRED_RNN_HIDDEN_DIM))
71
+
72
+ for t in range(joint_enc.size(1)):
73
+ f = joint_enc[:, t, :].unsqueeze(1)
74
+ not_blank = True
75
+ symbols_added = 0
76
+
77
+ while not_blank and ((self.config.RNNT_MAX_SYMBOLS is None) or (symbols_added < self.config.RNNT_MAX_SYMBOLS)):
78
+ g, _, dec_state = self.models['rnnt_decoder'](targets=torch.Tensor([[hyp[-1]]]).long(), target_length=torch.tensor([1]), states=prev_dec_state)
79
+ g = self.models['joint_pred'](g.transpose(1,2))
80
+ joint_out = f + g
81
+ joint_out = self.models['joint_pre_net'](joint_out)
82
+ logits = self.models[f'joint_post_net_{lang}'](joint_out)
83
+ log_probs = logits.log_softmax(dim=-1)
84
+ pred_token = log_probs.argmax(dim=-1).item()
85
+
86
+ if pred_token == self.config.BLANK_ID:
87
+ not_blank = False
88
+ else:
89
+ hyp.append(pred_token)
90
+ prev_dec_state = dec_state
91
+ symbols_added += 1
92
+
93
+ return ''.join([self.vocab[lang][x] for x in hyp if x != self.config.SOS]).replace('▁',' ').strip()
94
+
95
+ def _save_pretrained(self, save_directory) -> None:
96
+ # define how to serialize your model
97
+ os.makedirs(f'{save_directory}/assets', exist_ok=True)
98
+ for m_name, m in self.models.items():
99
+ if m is not None:
100
+ m.save(os.path.join(save_directory,'assets',m_name+'.ts'))
101
+
102
+ # load the vocab
103
+ with open(f'{save_directory}/assets/vocab.json','w') as writer:
104
+ print(json.dumps(self.vocab),file=writer)
105
+
106
+ # load the language_masks
107
+ with open(f'{save_directory}/assets/language_masks.json','w') as writer:
108
+ print(json.dumps(self.language_masks),file=writer)
109
+
110
+ @classmethod
111
+ def from_pretrained(cls,
112
+ pretrained_model_name_or_path,
113
+ *,
114
+ force_download=False,
115
+ resume_download=None,
116
+ proxies=None,
117
+ token=None,
118
+ cache_dir=None,
119
+ local_files_only=False,
120
+ revision=None, **kwargs):
121
+ loc = snapshot_download(repo_id=pretrained_model_name_or_path, token=token)
122
+ return cls(IndicASRConfig(ts_folder=loc))
123
+
124
+ if __name__ == '__main__':
125
+ from transformers import AutoConfig, AutoModel
126
+
127
+ # Register the model so it can be used with AutoModel
128
+ AutoConfig.register("iasr", IndicASRConfig)
129
+ AutoModel.register(IndicASRConfig, IndicASRModel)
130
+
131
+
132
+