iasr / model.py
tahirjm's picture
Update model.py
133904a verified
from transformers import PretrainedConfig, PreTrainedModel, AutoModel, AutoConfig
import torch
import os
import json
from huggingface_hub import snapshot_download
class IndicASRConfig(PretrainedConfig):
model_type = "iasr"
def __init__(self, ts_folder: str = "path", BLANK_ID: int = 256, RNNT_MAX_SYMBOLS: int = 10,
PRED_RNN_LAYERS: int = 2, PRED_RNN_HIDDEN_DIM: int = 640, SOS: int = 5632, **kwargs):
super().__init__(**kwargs)
self.ts_folder = ts_folder
self.BLANK_ID = BLANK_ID
self.RNNT_MAX_SYMBOLS = RNNT_MAX_SYMBOLS
self.PRED_RNN_LAYERS = PRED_RNN_LAYERS
self.PRED_RNN_HIDDEN_DIM = PRED_RNN_HIDDEN_DIM
self.SOS = SOS
class IndicASRModel(PreTrainedModel):
config_class = IndicASRConfig
def __init__(self, config):
super().__init__(config)
# self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Load model components
self.models = {}
names = ['preprocessor','encoder', 'ctc_decoder', 'rnnt_decoder', 'joint_enc', 'joint_pred', 'joint_pre_net'] + \
[f'joint_post_net_{z}' for z in ['as', 'bn', 'brx', 'doi', 'gu', 'hi', 'kn', 'kok', 'ks', 'mai', 'ml', 'mni', 'mr', 'ne', 'or', 'pa', 'sa', 'sat', 'sd', 'ta', 'te', 'ur']]
for n in names:
component_name = f'{config.ts_folder}/assets/{n}.ts'
if os.path.exists(component_name):
self.models[n] = torch.jit.load(component_name)
else:
self.models[n] = None
print(f'Failed to load {component_name}')
# Load vocab and language masks
with open(f'{config.ts_folder}/assets/vocab.json') as reader:
self.vocab = json.load(reader)
with open(f'{config.ts_folder}/assets/language_masks.json') as reader:
self.language_masks = json.load(reader)
def forward(self, wav, lang, decoding='ctc'):
encoder_outputs, encoded_lengths = self.encode(wav)
if decoding == 'ctc':
return self._ctc_decode(encoder_outputs, encoded_lengths, lang)
if decoding == 'rnnt':
return self._rnnt_decode(encoder_outputs, encoded_lengths, lang)
def encode(self, wav):
audio_signal, length = self.models['preprocessor'](input_signal=wav, length=torch.tensor([wav.shape[-1]]))
outputs, encoded_lengths = self.models['encoder'](audio_signal=audio_signal, length=length)
return outputs, encoded_lengths
def _ctc_decode(self, encoder_outputs, encoded_lengths, lang):
logprobs = self.models['ctc_decoder'](encoder_output=encoder_outputs)
logprobs = logprobs[:,:,self.language_masks[lang]].log_softmax(dim=-1)
indices = torch.argmax(logprobs[0],dim=-1)
collapsed_indices = torch.unique_consecutive(indices, dim=-1)
return ''.join([self.vocab[lang][x] for x in collapsed_indices if x != self.config.BLANK_ID]).replace('▁',' ').strip()
def _rnnt_decode(self, encoder_outputs, encoded_lengths, lang):
joint_enc = self.models['joint_enc'](encoder_outputs.transpose(1, 2))
hyp = [self.config.SOS]
prev_dec_state = (torch.zeros(self.config.PRED_RNN_LAYERS,1,self.config.PRED_RNN_HIDDEN_DIM),
torch.zeros(self.config.PRED_RNN_LAYERS,1,self.config.PRED_RNN_HIDDEN_DIM))
for t in range(joint_enc.size(1)):
f = joint_enc[:, t, :].unsqueeze(1)
not_blank = True
symbols_added = 0
while not_blank and ((self.config.RNNT_MAX_SYMBOLS is None) or (symbols_added < self.config.RNNT_MAX_SYMBOLS)):
g, _, dec_state = self.models['rnnt_decoder'](targets=torch.Tensor([[hyp[-1]]]).long(), target_length=torch.tensor([1]), states=prev_dec_state)
g = self.models['joint_pred'](g.transpose(1,2))
joint_out = f + g
joint_out = self.models['joint_pre_net'](joint_out)
logits = self.models[f'joint_post_net_{lang}'](joint_out)
log_probs = logits.log_softmax(dim=-1)
pred_token = log_probs.argmax(dim=-1).item()
if pred_token == self.config.BLANK_ID:
not_blank = False
else:
hyp.append(pred_token)
prev_dec_state = dec_state
symbols_added += 1
return ''.join([self.vocab[lang][x] for x in hyp if x != self.config.SOS]).replace('▁',' ').strip()
def _save_pretrained(self, save_directory) -> None:
# define how to serialize your model
os.makedirs(f'{save_directory}/assets', exist_ok=True)
for m_name, m in self.models.items():
if m is not None:
m.save(os.path.join(save_directory,'assets',m_name+'.ts'))
# load the vocab
with open(f'{save_directory}/assets/vocab.json','w') as writer:
print(json.dumps(self.vocab),file=writer)
# load the language_masks
with open(f'{save_directory}/assets/language_masks.json','w') as writer:
print(json.dumps(self.language_masks),file=writer)
@classmethod
def from_pretrained(cls,
pretrained_model_name_or_path,
*,
force_download=False,
resume_download=None,
proxies=None,
token=None,
cache_dir=None,
local_files_only=False,
revision=None, **kwargs):
loc = snapshot_download(repo_id=pretrained_model_name_or_path, token=token)
return cls(IndicASRConfig(ts_folder=loc))
if __name__ == '__main__':
from transformers import AutoConfig, AutoModel
# Register the model so it can be used with AutoModel
AutoConfig.register("iasr", IndicASRConfig)
AutoModel.register(IndicASRConfig, IndicASRModel)