File size: 10,768 Bytes
2a26d3b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
import re
import time
import os
import json
import random
import string
from enum import Enum, auto
from tqdm import tqdm
from collections import OrderedDict
import dataclasses
import pandas as pd
import timeout_decorator
import mpmath
import sympy as sp
from sympy.parsing.latex import parse_latex
import sympy as sp
from sympy import simplify
from sympy.printing import latex
from sympy.core.relational import Relational
from sympy.solvers.solveset import solvify
from sympy.solvers.inequalities import reduce_inequalities
from sympy.parsing.sympy_parser import (
    parse_expr,
    standard_transformations,
    implicit_multiplication,
)


def compare_numerical_ans(ans_p, ans_l):
    if ans_p is None:
        return False
    ans_p = ans_p.replace(",", "").replace("$", "")
    ans_l = ans_l.replace(",", "").replace("$", "")
    try:
        if ans_p.endswith("%"):
            ans_p = float(ans_p.rstrip("%")) / 100
        if isinstance(ans_p, str):
            ans_p = float(ans_p)
        if isinstance(ans_l, str):
            ans_l = float(ans_l)
    except Exception as e:
        return False
    return abs(ans_p - float(ans_l)) < 1e-3


def my_parse_latex(expr_str):
    expr_str = expr_str.replace("dfrac", "frac")
    expr = parse_latex(expr_str)
    if "\\pi" in expr_str:
        expr = expr.subs({sp.Symbol("pi"): sp.pi})
    expr = expr.subs({sp.Symbol("i"): sp.I})
    return expr


def is_number(element: str) -> bool:
    try:
        float(element.replace(" ", ""))
        return True
    except ValueError:
        return False


def percentage_to_fraction(text):
    pattern = r"(\d+(\.\d+)?%)"
    matches = re.findall(pattern, text)
    for match in matches:
        percentage_str = match[0]
        percentage = float(percentage_str.strip("%")) / 100
        fraction = str(percentage)
        text = text.replace(percentage_str, fraction)
    return text


def clean_expr_str(expr_str):
    expr_str = (
        expr_str.replace(" . ", ".")
        .replace(". ", ".")
        .replace("**", "^")
        .replace("\\pm", "")
        .replace("*", "\\times ")
        .replace("\\\\", "\\")
        .replace("\\ne ", "\\neq ")
        .replace("!=", "\\neq")
        .replace(">=", "\\ge")
        .replace("<=", "\\le")
        .replace("≠", "\\neq")
        .replace("dfrac", "frac")
        .replace("tfrac", "frac")
        .replace("\\$", "")
        .replace("$", "")
        .replace("\\%", "")
        .replace("%", "")
        .replace("\\!", "")
        .replace("^\circ", "\\times \\pi / 180")
        .replace("//", "/")
        .replace('"', "")
        # .replace(",", "") # TODO
    )
    # expr_str = re.sub(r"\^\s(.*)", r"\^\s{\1}", expr_str)
    expr_str = re.sub(r"\\+", r"\\", expr_str)
    expr_str = re.sub(r"\^\s?\((.*?)\)", r"^{\1}", expr_str)
    expr_str = re.sub(r"\\frac\s?(\d)\s?(\d+)", r"\\frac{\1}{\2}", expr_str)
    expr_str = re.sub(r"\\log_\s?(\d)\s?(\d+)", r"\\log_{\1}{\2}", expr_str)
    expr_str = re.sub(r"\\frac\s?{(.*?)}\s?(\d)", r"\\frac{\1}{\2}", expr_str)
    expr_str = re.sub(r"\\frac\s?(\d)\s?{(.*?)}", r"\\frac{\1}{\2}", expr_str)
    expr_str = re.sub(r"\\sqrt\s?(\d)", r"\\sqrt{\1}", expr_str)
    expr_str = re.sub(r"sqrt\s?\((\d+)\)", r"\\sqrt{\1}", expr_str)
    expr_str = re.sub(r"sqrt\s?\((.*?)\)", r"\\sqrt{\1}", expr_str)
    expr_str = expr_str.replace(" sqrt", "\\sqrt")
    expr_str = (
        expr_str.replace("\\left", "").replace("\\right.", "").replace("\\right", "")
    )
    return expr_str


def parse_latex_answer(sample):
    if isinstance(sample, int) or isinstance(sample, float):
        sample = str(sample)
    #     return sample
    sample = clean_expr_str(sample)
    try:
        expr = my_parse_latex(sample)
    except:
        print("[parse failed]", sample)
        return None
    return expr


def my_equals(ans_p, ans_l):
    return ans_p.equals(ans_l)


def is_expr_equal(ans_p, ans_l, is_strict=False):
    def is_equ_num_equal(equation, number):
        if (
            isinstance(equation, sp.Eq)
            # and isinstance(equation.lhs, sp.Symbol)
            and equation.rhs.is_number
            and number.is_number
        ):
            try:
                ret = my_equals(equation.rhs, number)
                return bool(ret)
            except:
                return equation.rhs == number

    if ans_p is None or ans_l is None:
        return False
    if isinstance(ans_l, str):
        return ans_p == ans_l

    if (
        not is_strict
        and is_equ_num_equal(ans_l, ans_p)
        or is_equ_num_equal(ans_p, ans_l)
    ):
        return True

    if ans_p.free_symbols != ans_l.free_symbols:
        return False

    if ans_p == ans_l:
        return True

    if isinstance(ans_l, sp.core.relational.Relational):
        try:
            if (
                type(ans_l) == type(ans_p)
                and my_equals(ans_p.lhs, ans_l.lhs)
                and my_equals(ans_p.rhs, ans_l.rhs)
            ):
                return True
        except Exception as e:
            print(ans_p, ans_l, e)
    try:
        ret = my_equals(ans_p, ans_l)
        return bool(ret)
    except:
        return False


# @timeout_decorator.timeout(5)
# def compare_ans(ans_p_str, ans_l_str, is_strict=False):
#     ans_p_str = clean_expr_str(ans_p_str)
#     ans_p_str = ans_p_str.replace(",", "").replace("$", "")
#     ans_l_str = clean_expr_str(ans_l_str)
#     ans_l_str = ans_l_str.replace(",", "").replace("$", "")
#     if ans_p_str is None:
#         return False
#     if ans_p_str.replace(" ", "") == ans_l_str.replace(" ", ""):
#         return True
#     ans_p = parse_latex_answer(ans_p_str)
#     if ans_p is None:
#         return False
#     ans_l = parse_latex_answer(ans_l_str)
#     if ans_l is None:
#         return False
#     return is_expr_equal(ans_p, ans_l, is_strict=is_strict)


def extract_answer_number(sentence: str) -> float:
    sentence = sentence.replace(",", "")
    pred = [s for s in re.findall(r"-?\d+\.?\d*", sentence)]
    if not pred:
        return ""
    return pred[-1]


@timeout_decorator.timeout(5)
def compare_ans(ans_p_str, ans_l_str, is_strict=False):
    ans_p_str = clean_expr_str(ans_p_str)
    ans_p_str = ans_p_str.replace(",", "").replace("$", "")
    ans_l_str = clean_expr_str(ans_l_str)
    ans_l_str = ans_l_str.replace(",", "").replace("$", "")
    if ans_p_str is None:
        return False
    if ans_p_str.replace(" ", "") == ans_l_str.replace(" ", ""):
        return True
    ans_p = parse_latex_answer(ans_p_str)
    if ans_p is None:
        return False
    ans_l = parse_latex_answer(ans_l_str)
    if ans_l is None:
        return False
    if is_expr_equal(ans_p, ans_l, is_strict=is_strict):
        return True
    # TODO not suitable
    ans_p_str = extract_answer_number(ans_p_str)
    if is_number(ans_p_str):
        ans_p = parse_latex_answer(ans_p_str)
        if is_expr_equal(ans_p, ans_l, is_strict=is_strict):
            return True
    return False


def vote(answers):
    counter = Counter(answers)
    return counter.most_common(1)[0][0]


def contains_number(s):
    return any(i.isdigit() for i in s)


def rough_compare_ans(generation, answer):
    for line in generation.split("\n")[::-1]:
        if contains_number(line):
            break
    words = line.split()
    for i, w in enumerate(words):
        if i > 0 and words[i - 1] in ["+", "-", "*", "/", "^"]:
            continue
        if i < len(words) - 1 and words[i + 1] in ["+", "-", "*", "/", "^"]:
            continue
        if not contains_number(w):
            continue
        if compare_numerical_ans(w.replace("$", ""), answer) and "=" not in " ".join(
            w[i:]
        ):
            return 1
    return 0


if __name__ == "__main__":
    pred = "To find the minimum value of $f(x)$, we need to find the critical points where the derivative of $f(x)$ is either zero or undefined. Let's write a function to solve this problem:\n\n```python\nfrom sympy import symbols, diff, solve\n\ndef find_minimum_value():\n    x, p = symbols('x p')\n    f = abs(x - p) + abs(x - 15) + abs(x - p - 15)\n    f_prime = diff(f, x)\n    critical_points = solve(f_prime, x)\n    \n    # Evaluate f(x) at the critical points and endpoints\n    values = [f.subs(x, p), f.subs(x, 15)]\n    for point in critical_points:\n        values.append(f.subs(x, point))\n    \n    # Find the minimum value\n    minimum_value = min(values)\n    \n    return minimum_value\n\nresult = find_minimum_value()\nprint(result)\n```\n```output\nValueError(\"\\nCan't calculate derivative wrt re(x) + I*im(x).\")\n```\nIt seems that there is an error in the code. Let's modify the code to handle the case when the derivative is undefined.\n\n```python\nfrom sympy import symbols, diff, solve, oo\n\ndef find_minimum_value():\n    x, p = symbols('x p')\n    f = abs(x - p) + abs(x - 15) + abs(x - p - 15)\n    f_prime = diff(f, x)\n    critical_points = solve(f_prime, x)\n    \n    # Evaluate f(x) at the critical points and endpoints\n    values = [f.subs(x, p), f.subs(x, 15)]\n    for point in critical_points:\n        if point.is_real:\n            values.append(f.subs(x, point))\n    \n    # Find the minimum value\n    minimum_value = min(values)\n    \n    return minimum_value\n\nresult = find_minimum_value()\nprint(result)\n```\n```output\nValueError(\"\\nCan't calculate derivative wrt re(x) + I*im(x).\")\n```\nApologies for the error in the code. It seems that the derivative calculation is causing an issue. Let's modify the code to handle the absolute value function and find the minimum value using a different approach.\n\n```python\nfrom sympy import symbols, Piecewise, Min, oo\n\ndef find_minimum_value():\n    x, p = symbols('x p')\n    f = abs(x - p) + abs(x - 15) + abs(x - p - 15)\n    \n    # Define the piecewise function for f(x)\n    f_piecewise = Piecewise((f, x <= p), (f.subs(x, p), p < x <= 15), (f.subs(x, 15), x > 15))\n    \n    # Find the minimum value\n    minimum_value = Min(f_piecewise, (x, p, 15))\n    \n    return minimum_value\n\nresult = find_minimum_value()\nprint(result)\n```\n```output\nTypeError('cannot determine truth value of Relational')\n```\nApologies for the error in the code. It seems that the piecewise function is causing an issue. Let's modify the code to handle the absolute value function and find the minimum value using a different approach.\n\n```python\nfrom sympy import symbols, Min, oo\n\ndef find_minimum_value():\n    x, p = symbols('x p')\n    f = abs(x - p) + abs(x - 15) + abs(x - p - 15)\n    \n    # Find the minimum value\n    minimum_value = Min(f, (x, p, 15))\n    \n    return minimum_value\n\nresult = find_minimum_value()\nprint(result)\n```\n"
    label = "15"
    print(compare_ans(pred, label))