File size: 3,975 Bytes
2a26d3b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
import argparse
import numpy as np
from tqdm import tqdm
from pebble import ProcessPool
from concurrent.futures import TimeoutError

from grader import *

from parser import *
from utils import load_jsonl
from python_executor import PythonExecutor


def evaluate(data_name, prompt_type, samples: list=None, file_path: str=None, max_num_samples=None, execute=False):
    assert samples or file_path, "samples or file_path must be provided"
    if not samples:
        samples = list(load_jsonl(file_path))
    if 'idx' in samples[0]:
        samples = {sample['idx']: sample for sample in samples}.values()
        samples = sorted(samples, key=lambda x: x['idx']) 
    else:
        samples = [dict(idx=idx, **sample) for idx, sample in enumerate(samples)]

    if max_num_samples:
        print(f"max_num_samples: {max_num_samples} / {len(samples)}")
        samples = samples[:max_num_samples]
    
    # parse gt
    for sample in samples:
        sample['gt_cot'], sample['gt'] = parse_ground_truth(sample, data_name)
    params = [(idx, pred, sample['gt']) for idx, sample in enumerate(samples) for pred in sample['pred']]

    scores = []
    timeout_cnt = 0 

    with ProcessPool(max_workers=1) as pool:
        future = pool.map(math_equal_process, params, timeout=3)
        iterator = future.result()
        with tqdm(total=len(samples), desc="Evaluate") as progress_bar:
            while True:
                try:
                    result = next(iterator)
                    scores.append(result)
                except StopIteration:
                    break
                except TimeoutError as error:
                    print(error)
                    scores.append(False)
                    timeout_cnt += 1
                except Exception as error:
                    print(error.traceback)
                    exit()
                progress_bar.update(1) 

    idx = 0
    score_mat = []
    for sample in samples:
        sample['score'] = scores[idx: idx+len(sample['pred'])]
        assert len(sample['score']) == len(sample['pred'])
        score_mat.append(sample['score'])
        idx += len(sample['pred'])

    max_len = max([len(s) for s in score_mat])

    for i, s in enumerate(score_mat):
        if len(s) < max_len:
            score_mat[i] = s + [s[-1]] * (max_len - len(s)) # pad

    # output mean of each column of scores
    col_means= np.array(score_mat).mean(axis=0)
    mean_score = list(np.round(col_means * 100, decimals=1))

    result_json = {
        "num_samples": len(samples),
        "num_scores": len(scores),
        "timeout_samples": timeout_cnt,
        "empty_samples": len([s for s in samples if not s['pred'][-1]]),
        "acc": mean_score[0]
    }

    # each type score
    if "type" in samples[0]:
        type_scores = {}
        for sample in samples:
            if sample['type'] not in type_scores:
                type_scores[sample['type']] = []
            type_scores[sample['type']].append(sample['score'][-1])
        type_scores = {k: np.round(np.array(v).mean() * 100, decimals=1) for k, v in type_scores.items()}
        type_scores = {k: v for k, v in sorted(type_scores.items(), key=lambda item: item[0])}
        result_json['type_acc'] = type_scores

    print(result_json)
    return samples, result_json


def parse_args():
    parser = argparse.ArgumentParser()
    parser.add_argument("--data_name", type=str, default="math")
    parser.add_argument("--prompt_type", type=str, default="tool-integrated")
    parser.add_argument("--file_path", type=str, default=None, required=True)
    parser.add_argument("--max_num_samples", type=int, default=None)
    parser.add_argument("--execute", action="store_true")
    args = parser.parse_args()
    return args

if __name__ == "__main__":
    args = parse_args()
    evaluate(data_name=args.data_name, prompt_type=args.prompt_type, file_path=args.file_path,
             max_num_samples=args.max_num_samples, execute=args.execute)