File size: 8,021 Bytes
2a26d3b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
import datetime
import json
import multiprocessing
import os
import re
import string
import subprocess
import time

import numpy as np
import torch
import torch.distributed as dist
# from attrdict import AttrDict
from human_eval.evaluation import evaluate_functional_correctness
from transformers import AutoTokenizer
from utils.dataset import HumanEvalDataset
from utils.utils import cleanup_code


class HumanEval:
    """
    HumanEval evaluation class.
    """

    def __init__(
        self,
        data_root,
        max_seq_len=2048,
        language="python",
        max_gen_len=200,
        batch_size=512,
        log_dir=None,
        temperature=0,
        issft=False,
        top_p=0.95,
        model_name="",
        inference_increment=True,
        tokenizer_cfg=None,
        n_sample=40,
        k_sample=1,
    ):
        self.data_root = data_root
        self.max_seq_len = max_seq_len
        self.max_gen_len = max_gen_len
        self.batch_size = batch_size
        self.k = k_sample
        self.n_sample = n_sample
        self.language = language
        self.log_dir = log_dir
        self.sft = issft
        self.temperature = temperature
        self.top_p = top_p
        self.model_name = tokenizer_cfg["model_path"].replace("/", "_")
        self.inference_increment = inference_increment
        os.makedirs(self.log_dir, exist_ok=True)
        tokenizer_cls = tokenizer_cfg.pop("cls")
        try:
            self.tokenizer = AutoTokenizer.from_pretrained(
                tokenizer_cfg.pop("model_path"), trust_remote_code=True
            )
        except Exception as e:
            print(e)
            assert False

    @torch.no_grad()
    def eval_model(self, gpt, accelerator):
        """
        Evaluate the model on HumanEval.
        """
        assert (
            self.log_dir is not None
        ), "log_dir should not be None when evaluating humaneval"
        dataset = HumanEvalDataset(
            self.data_root,
            sample_num=self.n_sample,
            language=self.language,
            issft=self.sft,
        )
        nprompt = len(dataset) // self.n_sample
        dp_rank = accelerator.process_index
        dp_size = accelerator.num_processes
        if self.k > 1:
            assert self.n_sample >= 100, "HumanEval PASS@100 needs n_sample >= 100"
        gpt.eval()
        # each process will process a subset of the dataset
        prompt_indices_split = np.array_split(range(nprompt), dp_size)
        prompt_indices = prompt_indices_split[dp_rank]
        indices = [
            x * self.n_sample + j for x in prompt_indices for j in range(self.n_sample)
        ]
        all_num = len(indices)
        processed_num = 0
        log_file = os.path.join(
            self.log_dir,
            f"{self.model_name}_rank{dp_rank}_bs{self.batch_size}_shot_log_{self.language}.json",
        )
        tmpfile = open(log_file, "w")
        start_time = time.time()
        # split the dataset into batches and construct a list of inputs
        for idx in range(0, len(indices), self.batch_size):
            prompt_list = []
            prompt_lens = []
            orriginal_prompt_list = []
            tokenized_prompt_lens = []
            taskid = []
            # get the prompts from the dataset
            for j in indices[idx : idx + self.batch_size]:
                data = dataset[j]
                fprompt = data["prompt"].strip()
                prompt_list.append(fprompt)
                tmp = self.tokenizer.encode(fprompt)
                orriginal_prompt_list.append(data["original_prompt"])
                prompt_lens.append(len(fprompt))
                tokenized_prompt_lens.append(tmp)
                taskid.append(data["task_id"])
            input_ids = torch.tensor(tokenized_prompt_lens).to(accelerator.device)
            # generate the code
            if self.temperature != 0:
                decoded = gpt.generate(
                    input_ids=input_ids,
                    max_new_tokens=self.max_gen_len,
                    do_sample=True,
                    eos_token_id=self.tokenizer.eos_token_id,
                    temperature=self.temperature,
                    top_p=self.top_p,
                    pad_token_id=self.tokenizer.eos_token_id,
                )
            else:
                decoded = gpt.generate(
                    input_ids=input_ids,
                    max_new_tokens=self.max_gen_len,
                    do_sample=False,
                    eos_token_id=self.tokenizer.eos_token_id,
                    pad_token_id=self.tokenizer.eos_token_id,
                )
            # save the results to a file
            for local_idx, text in enumerate(decoded):
                prediction = decoded[local_idx]
                prediction = self.tokenizer.decode(prediction, skip_special_tokens=True)
                suffixprediction = prediction[prompt_lens[local_idx] :]
                suffixprediction = cleanup_code(
                    suffixprediction,
                    self.language,
                    "humaneval",
                    self.sft,
                    dataset.stopwords,
                )
                # sft mode does not need original prompt
                if not self.sft:
                    suffixprediction = (
                        orriginal_prompt_list[local_idx] + "\n" + suffixprediction
                    )
                res = {
                    "task_id": taskid[local_idx],
                    "generation": suffixprediction,
                    "prompt": orriginal_prompt_list[local_idx],
                    "wholecode": prediction,
                }
                tmpfile.write(json.dumps(res) + "\n")
                tmpfile.flush()
                processed_num += 1
            self.log_score(dp_rank, processed_num, all_num, start_time, self.batch_size)
        tmpfile.close()
        accelerator.wait_for_everyone()
        # calculate the final score of pass@k
        self._calculate_final_score(accelerator)
        accelerator.wait_for_everyone()
        return

    def log_score(self, dp_rank, processed_num, all_num, start_time, bs):
        """
        Log the score.
        """
        mem = torch.cuda.max_memory_allocated() / (1 << 30)
        avg_time = (time.time() - start_time) / processed_num * bs
        print(
            f"DP RANK:{dp_rank} process_num/all_num:{int(processed_num)}/{all_num} "
            f"avg_time_per_batch:{avg_time:.2f} s "
            f"still_need:{((all_num - processed_num) // bs + 1) * avg_time / 60:.2f} m",
            f"mem:{mem:.3f} GiB bs:{bs}",
            flush=True,
        )
        if processed_num == all_num:
            print(
                f"EVAL DONE! Process time {(time.time() - start_time) / 60:.2f} m",
                flush=True,
            )

    def _calculate_final_score(self, accelerator):
        """
        Calculate the final score.
        """
        if accelerator.is_local_main_process:
            logfilepath = os.path.join(self.log_dir, f"final_{self.model_name}.jsonl")
            logfile = open(logfilepath, "w")
            for i in range(accelerator.num_processes):
                tmplogfile = os.path.join(
                    self.log_dir,
                    f"{self.model_name}_rank{i}_bs{self.batch_size}_shot_log_{self.language}.json",
                )
                logfile.write(open(tmplogfile).read().strip() + "\n")
                os.remove(tmplogfile)
            logfile.close()
            timeout = 10
            runlang = self.language
            res = evaluate_functional_correctness(
                input_file=logfilepath,
                problem_file=os.path.join(
                    self.data_root, f"humaneval-{self.language}.jsonl"
                ),
                tmp_dir=self.log_dir,
                timeout=timeout,
                language=runlang,
            )
            print("score is", res["pass@%d" % self.k])
            os.remove(logfilepath)
        return