File size: 7,552 Bytes
2a26d3b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
import argparse
import json
import os
import shutil
from pathlib import Path

import torch
import transformers
from human_eval.evaluation import evaluate_functional_correctness
from tqdm import tqdm
from transformers import AutoTokenizer
from utils.utils import extract_generation_code, languge_settings
from vllm import LLM, SamplingParams

data_abs_dir = Path(__file__).parent / "data"


def build_deepseekcoder_instruction(languge: str, question: str):
    return """
Please continue to complete the function. You are not allowed to modify the given code and do the completion only. Please return all completed function in a codeblock. Here is the given code to do completion:
```{}
{}
```
""".strip().format(
        languge.lower(), question.strip()
    )


def create_dir(output_dir):
    if os.path.exists(output_dir):
        if not os.access(output_dir, os.W_OK):
            shutil.rmtree(output_dir)
            os.makedirs(output_dir)
            os.chmod(output_dir, 0o777)
            print("not write permission, makedir:", output_dir)
        else:
            print(f"{output_dir} exists!")
    else:
        os.makedirs(output_dir)
        os.chmod(output_dir, 0o777)
        print("makedir:", output_dir)


def get_client_res(messages, example, output_key, open_ai_key=False):
    try:
        if open_ai_key:
            from openai import AzureOpenAI, OpenAI
            try:
                api_key = os.environ["OPENAI_API_KEY"]
            except KeyError:
                print("环境变量 OPENAI_API_KEY 未设置")
                api_key = "default_value"

            client = AzureOpenAI(
                api_key=api_key,
                api_version="2024-07-01-preview",
                azure_endpoint="https://zju-tablegpt.openai.azure.com/",
            )
            chat_response = client.chat.completions.create(
                model="gpt-4o",
                # model="gpt-4o-mini",
                messages=messages,
                top_p=0.95,
                temperature=0,
                max_tokens=1024,
                timeout=40,
            )
        else:
            # Set OpenAI's API key and API base to use vLLM's API server.
            openai_api_key = "EMPTY"
            openai_api_base = "http://localhost:8080/v1"

            client = OpenAI(
                api_key=openai_api_key,
                base_url=openai_api_base,
            )
            chat_response = client.chat.completions.create(
                model="qwen2-7b-sft",
                messages=messages,
                top_p=0.3,
                temperature=0.1,
                max_tokens=1024,
            )
        example[output_key] = chat_response.choices[0].message.content
    except Exception as e:
        print(f"An unexpected error occurred: {e}")
        example[output_key] = None
    example["input"] = messages
    return example



def generate_main(args):
    model_name_or_path = args.model_path
    lang = args.language
    temp_dir = args.temp_dir
    create_dir(temp_dir)
    # os.makedirs(temp_dir, exist_ok=True)
    problem_file = os.path.join(data_abs_dir, f"humaneval-{lang}.jsonl")
    if not args.api:
        print("model", model_name_or_path)
        tokenizer = AutoTokenizer.from_pretrained(model_name_or_path)
        print(
            "load tokenizer {} from {} over.".format(
                tokenizer.__class__, model_name_or_path
            )
        )
        llm_args = {
            "model": model_name_or_path,
            "gpu_memory_utilization": 0.95,
            "trust_remote_code": True,
            "tensor_parallel_size": args.gpus_num,
            "dtype": "half",
            "max_model_len": 8192,
            "enforce_eager": True,
        }

        llm = LLM(**llm_args)
        sampling_params = SamplingParams(
            temperature=0,
            max_tokens=1024,
            top_p=0.95,
            stop_token_ids=[tokenizer.eos_token_id],
        )

    examples = [json.loads(x) for x in open(problem_file) if x.strip()]
    print("Read {} examples for evaluation over.".format(len(examples)))
    messages_list = []
    for example in tqdm(examples, desc="Generating"):
        prompt = build_deepseekcoder_instruction(
            languge_settings[lang]["full_name"], example["prompt"]
        )
        message = [{"role": "user", "content": prompt}]
        if args.api:
            messages_list.append(message)
        else:
            messages_list.append(
                tokenizer.apply_chat_template(
                    message, tokenize=False, add_generation_prompt=True
                )
            )
    if args.api:
        from joblib import Parallel, delayed
        examples_ = Parallel(n_jobs=24)(
            delayed(get_client_res)(inp, examples[i], "output",open_ai_key=True)
            for i, inp in enumerate(tqdm(messages_list))
        )

        # 请求错误的重新请求
        examples = []
        for example in examples_:
            if example["output"] == None:
                example = get_client_res(
                    example["input"], example, "output", open_ai_key=True
                )
            del example["input"]
            examples.append(example)

        generated_examples = []
        for example in examples:
            example = extract_generation_code(example, lang_code=lang)
            generated_examples.append(example)
    else:
        outputs = llm.generate(messages_list, sampling_params=sampling_params)
        generated_examples = []
        for i, output in enumerate(tqdm(outputs)):
            output = output.outputs[0].text
            example = examples[i]
            example["output"] = output
            example = extract_generation_code(example, lang_code=lang)
            generated_examples.append(example)

    print("Generate all over!!!")
    # os.makedirs(args.save_dir, exist_ok=True)
    create_dir(args.save_dir)
    saved_path = os.path.join(args.save_dir, "results_humaneval.json")
    with open(saved_path, "w", encoding="utf-8") as fw:
        for ex in generated_examples:
            fw.write(json.dumps(ex) + "\n")
        print(
            "Save {} processed examples into {} over!".format(
                len(generated_examples), saved_path
            )
        )

    result = evaluate_functional_correctness(
        input_file=saved_path,
        tmp_dir=temp_dir,
        n_workers=8,
        timeout=3.0,
        problem_file=problem_file,
        language=lang,
        out_path=saved_path,
    )
    print(lang, result, model_name_or_path)


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument(
        "--model_path",
        type=str,
        help="model name or path",
        default="/data4/sft_output/qwen2-instruct-0709/checkpoint-1400",
    )
    parser.add_argument(
        "--gpus_num", type=int, default=1, help="the number of GPUs you want to use."
    )
    parser.add_argument(
        "--save_dir",
        type=str,
        help="output path of your generation",
        default="output",
    )
    parser.add_argument("--api", action="store_true", help="infer api type")
    parser.add_argument("--language", type=str, help="langauge", default="python")
    parser.add_argument(
        "--temp_dir", type=str, help="temp dir for evaluation", default="output/tmp"
    )
    parser.add_argument("--seed", type=int, help="seed", default=42)
    args = parser.parse_args()

    os.environ["TOKENIZERS_PARALLELISM"] = "false"
    transformers.set_seed(args.seed)
    generate_main(args)