--- base_model: meta-llama/Llama-2-7b-hf tags: - generated_from_trainer datasets: - conceptofmind/FLAN_2022 model-index: - name: outputs results: [] --- # outputs This model is a fine-tuned version of [meta-llama/Llama-2-7b-hf](https://huggingface.co/meta-llama/Llama-2-7b-hf) on the conceptofmind/FLAN_2022 dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 12 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - gradient_accumulation_steps: 8 - total_train_batch_size: 96 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.03 - num_epochs: 1.0 ### Training results ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu117 - Datasets 2.14.3 - Tokenizers 0.13.3 # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_synapsoft__Llama-2-7b-hf-flan2022-1.2M) | Metric | Value | |-----------------------|---------------------------| | Avg. | 41.68 | | ARC (25-shot) | 23.29 | | HellaSwag (10-shot) | 78.46 | | MMLU (5-shot) | 42.33 | | TruthfulQA (0-shot) | 37.97 | | Winogrande (5-shot) | 75.53 | | GSM8K (5-shot) | 4.47 | | DROP (3-shot) | 29.66 |