sycod
commited on
Commit
·
6ebb6d1
1
Parent(s):
d20ece8
eda begun
Browse files- .gitignore +8 -10
- EDA.ipynb +0 -0
- config.yaml +8 -21
- notebooks/template-audio.ipynb +0 -1351
- notebooks/template-image.ipynb +0 -475
- notebooks/template-text.ipynb +0 -1642
- src/load_data.py +97 -0
- src/models.py +395 -0
- tasks/utils/load_data.py +0 -59
.gitignore
CHANGED
@@ -1,19 +1,17 @@
|
|
1 |
-
.ipynb_checkpoints/sandbox-checkpoint.ipynb
|
2 |
-
.DS_Store
|
3 |
-
auto_evals/
|
4 |
-
venv/
|
5 |
__pycache__/
|
|
|
6 |
.env
|
7 |
.ipynb_checkpoints
|
8 |
-
.
|
9 |
.venv
|
10 |
-
|
|
|
|
|
|
|
11 |
eval-queue/
|
12 |
eval-results/
|
13 |
eval-queue-bk/
|
14 |
eval-results-bk/
|
15 |
logs/
|
16 |
-
|
17 |
-
|
18 |
-
data/
|
19 |
-
pyro-sdis/
|
|
|
|
|
|
|
|
|
|
|
1 |
__pycache__/
|
2 |
+
.DS_Store
|
3 |
.env
|
4 |
.ipynb_checkpoints
|
5 |
+
.ipynb_checkpoints/sandbox-checkpoint.ipynb
|
6 |
.venv
|
7 |
+
.vscode/
|
8 |
+
auto_evals/
|
9 |
+
data/
|
10 |
+
emissions.csv
|
11 |
eval-queue/
|
12 |
eval-results/
|
13 |
eval-queue-bk/
|
14 |
eval-results-bk/
|
15 |
logs/
|
16 |
+
pyro-sdis/
|
17 |
+
venv/
|
|
|
|
EDA.ipynb
ADDED
The diff for this file is too large to render.
See raw diff
|
|
config.yaml
CHANGED
@@ -1,23 +1,10 @@
|
|
1 |
-
data
|
2 |
-
|
3 |
-
img_dir: "Images"
|
4 |
-
annot_dir: "Annotation"
|
5 |
-
img_db_uri: "img_db.csv"
|
6 |
-
train_dir: "train"
|
7 |
-
test_dir: "test"
|
8 |
-
checkpoint_dir : "model_chkpts"
|
9 |
-
app_dir: "app"
|
10 |
|
11 |
-
log:
|
12 |
-
|
13 |
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
app_data:
|
19 |
-
local_path: "app_data"
|
20 |
-
model: "EfficientNetB0_app.keras"
|
21 |
-
onnx: "EfficientNetB0_app.onnx"
|
22 |
-
# breeds are not in the same order as original classes
|
23 |
-
breeds: ['Brabancon_griffon', 'Cardigan', 'Leonberg', 'basenji', 'boxer', 'chow', 'dhole', 'dingo', 'malamute', 'papillon']
|
|
|
1 |
+
data_dir: "data"
|
2 |
+
db_info_uri: "data_info.csv"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
|
4 |
+
# log:
|
5 |
+
# log_dir: "logs"
|
6 |
|
7 |
+
# app_data:
|
8 |
+
# local_path: "app_data"
|
9 |
+
# model: "EfficientNetB0_app.keras"
|
10 |
+
# onnx: "EfficientNetB0_app.onnx"
|
|
|
|
|
|
|
|
|
|
|
|
notebooks/template-audio.ipynb
DELETED
@@ -1,1351 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"cells": [
|
3 |
-
{
|
4 |
-
"cell_type": "markdown",
|
5 |
-
"metadata": {},
|
6 |
-
"source": [
|
7 |
-
"# Text task notebook template\n",
|
8 |
-
"## Loading the necessary libraries"
|
9 |
-
]
|
10 |
-
},
|
11 |
-
{
|
12 |
-
"cell_type": "code",
|
13 |
-
"execution_count": 3,
|
14 |
-
"metadata": {},
|
15 |
-
"outputs": [
|
16 |
-
{
|
17 |
-
"name": "stderr",
|
18 |
-
"output_type": "stream",
|
19 |
-
"text": [
|
20 |
-
"[codecarbon WARNING @ 19:48:07] Multiple instances of codecarbon are allowed to run at the same time.\n",
|
21 |
-
"[codecarbon INFO @ 19:48:07] [setup] RAM Tracking...\n",
|
22 |
-
"[codecarbon INFO @ 19:48:07] [setup] CPU Tracking...\n",
|
23 |
-
"[codecarbon WARNING @ 19:48:09] We saw that you have a 13th Gen Intel(R) Core(TM) i7-1365U but we don't know it. Please contact us.\n",
|
24 |
-
"[codecarbon WARNING @ 19:48:09] No CPU tracking mode found. Falling back on CPU constant mode. \n",
|
25 |
-
" Windows OS detected: Please install Intel Power Gadget to measure CPU\n",
|
26 |
-
"\n",
|
27 |
-
"[codecarbon WARNING @ 19:48:11] We saw that you have a 13th Gen Intel(R) Core(TM) i7-1365U but we don't know it. Please contact us.\n",
|
28 |
-
"[codecarbon INFO @ 19:48:11] CPU Model on constant consumption mode: 13th Gen Intel(R) Core(TM) i7-1365U\n",
|
29 |
-
"[codecarbon WARNING @ 19:48:11] No CPU tracking mode found. Falling back on CPU constant mode.\n",
|
30 |
-
"[codecarbon INFO @ 19:48:11] [setup] GPU Tracking...\n",
|
31 |
-
"[codecarbon INFO @ 19:48:11] No GPU found.\n",
|
32 |
-
"[codecarbon INFO @ 19:48:11] >>> Tracker's metadata:\n",
|
33 |
-
"[codecarbon INFO @ 19:48:11] Platform system: Windows-11-10.0.22631-SP0\n",
|
34 |
-
"[codecarbon INFO @ 19:48:11] Python version: 3.12.7\n",
|
35 |
-
"[codecarbon INFO @ 19:48:11] CodeCarbon version: 3.0.0_rc0\n",
|
36 |
-
"[codecarbon INFO @ 19:48:11] Available RAM : 31.347 GB\n",
|
37 |
-
"[codecarbon INFO @ 19:48:11] CPU count: 12\n",
|
38 |
-
"[codecarbon INFO @ 19:48:11] CPU model: 13th Gen Intel(R) Core(TM) i7-1365U\n",
|
39 |
-
"[codecarbon INFO @ 19:48:11] GPU count: None\n",
|
40 |
-
"[codecarbon INFO @ 19:48:11] GPU model: None\n",
|
41 |
-
"[codecarbon INFO @ 19:48:11] Saving emissions data to file c:\\git\\submission-template\\notebooks\\emissions.csv\n"
|
42 |
-
]
|
43 |
-
}
|
44 |
-
],
|
45 |
-
"source": [
|
46 |
-
"from fastapi import APIRouter\n",
|
47 |
-
"from datetime import datetime\n",
|
48 |
-
"from datasets import load_dataset\n",
|
49 |
-
"from sklearn.metrics import accuracy_score\n",
|
50 |
-
"import random\n",
|
51 |
-
"\n",
|
52 |
-
"import sys\n",
|
53 |
-
"sys.path.append('../tasks')\n",
|
54 |
-
"\n",
|
55 |
-
"from utils.evaluation import AudioEvaluationRequest\n",
|
56 |
-
"from utils.emissions import tracker, clean_emissions_data, get_space_info\n",
|
57 |
-
"\n",
|
58 |
-
"\n",
|
59 |
-
"# Define the label mapping\n",
|
60 |
-
"LABEL_MAPPING = {\n",
|
61 |
-
" \"chainsaw\": 0,\n",
|
62 |
-
" \"environment\": 1\n",
|
63 |
-
"}"
|
64 |
-
]
|
65 |
-
},
|
66 |
-
{
|
67 |
-
"cell_type": "markdown",
|
68 |
-
"metadata": {},
|
69 |
-
"source": [
|
70 |
-
"## Loading the datasets and splitting them"
|
71 |
-
]
|
72 |
-
},
|
73 |
-
{
|
74 |
-
"cell_type": "code",
|
75 |
-
"execution_count": 4,
|
76 |
-
"metadata": {},
|
77 |
-
"outputs": [
|
78 |
-
{
|
79 |
-
"data": {
|
80 |
-
"application/vnd.jupyter.widget-view+json": {
|
81 |
-
"model_id": "668da7bf85434e098b95c3ec447d78fe",
|
82 |
-
"version_major": 2,
|
83 |
-
"version_minor": 0
|
84 |
-
},
|
85 |
-
"text/plain": [
|
86 |
-
"README.md: 0%| | 0.00/5.18k [00:00<?, ?B/s]"
|
87 |
-
]
|
88 |
-
},
|
89 |
-
"metadata": {},
|
90 |
-
"output_type": "display_data"
|
91 |
-
},
|
92 |
-
{
|
93 |
-
"name": "stderr",
|
94 |
-
"output_type": "stream",
|
95 |
-
"text": [
|
96 |
-
"c:\\Users\\theo.alvesdacosta\\AppData\\Local\\anaconda3\\Lib\\site-packages\\huggingface_hub\\file_download.py:139: UserWarning: `huggingface_hub` cache-system uses symlinks by default to efficiently store duplicated files but your machine does not support them in C:\\Users\\theo.alvesdacosta\\.cache\\huggingface\\hub\\datasets--QuotaClimat--frugalaichallenge-text-train. Caching files will still work but in a degraded version that might require more space on your disk. This warning can be disabled by setting the `HF_HUB_DISABLE_SYMLINKS_WARNING` environment variable. For more details, see https://huggingface.co/docs/huggingface_hub/how-to-cache#limitations.\n",
|
97 |
-
"To support symlinks on Windows, you either need to activate Developer Mode or to run Python as an administrator. In order to activate developer mode, see this article: https://docs.microsoft.com/en-us/windows/apps/get-started/enable-your-device-for-development\n",
|
98 |
-
" warnings.warn(message)\n"
|
99 |
-
]
|
100 |
-
},
|
101 |
-
{
|
102 |
-
"data": {
|
103 |
-
"application/vnd.jupyter.widget-view+json": {
|
104 |
-
"model_id": "5b68d43359eb429395da8be7d4b15556",
|
105 |
-
"version_major": 2,
|
106 |
-
"version_minor": 0
|
107 |
-
},
|
108 |
-
"text/plain": [
|
109 |
-
"train.parquet: 0%| | 0.00/1.21M [00:00<?, ?B/s]"
|
110 |
-
]
|
111 |
-
},
|
112 |
-
"metadata": {},
|
113 |
-
"output_type": "display_data"
|
114 |
-
},
|
115 |
-
{
|
116 |
-
"data": {
|
117 |
-
"application/vnd.jupyter.widget-view+json": {
|
118 |
-
"model_id": "140a304773914e9db8f698eabeb40298",
|
119 |
-
"version_major": 2,
|
120 |
-
"version_minor": 0
|
121 |
-
},
|
122 |
-
"text/plain": [
|
123 |
-
"Generating train split: 0%| | 0/6091 [00:00<?, ? examples/s]"
|
124 |
-
]
|
125 |
-
},
|
126 |
-
"metadata": {},
|
127 |
-
"output_type": "display_data"
|
128 |
-
},
|
129 |
-
{
|
130 |
-
"data": {
|
131 |
-
"application/vnd.jupyter.widget-view+json": {
|
132 |
-
"model_id": "6d04e8ab1906400e8e0029949dc523a5",
|
133 |
-
"version_major": 2,
|
134 |
-
"version_minor": 0
|
135 |
-
},
|
136 |
-
"text/plain": [
|
137 |
-
"Map: 0%| | 0/6091 [00:00<?, ? examples/s]"
|
138 |
-
]
|
139 |
-
},
|
140 |
-
"metadata": {},
|
141 |
-
"output_type": "display_data"
|
142 |
-
}
|
143 |
-
],
|
144 |
-
"source": [
|
145 |
-
"request = AudioEvaluationRequest()\n",
|
146 |
-
"\n",
|
147 |
-
"# Load and prepare the dataset\n",
|
148 |
-
"dataset = load_dataset(request.dataset_name)\n",
|
149 |
-
"\n",
|
150 |
-
"# Split dataset\n",
|
151 |
-
"train_test = dataset[\"train\"].train_test_split(test_size=request.test_size, seed=request.test_seed)\n",
|
152 |
-
"test_dataset = train_test[\"test\"]"
|
153 |
-
]
|
154 |
-
},
|
155 |
-
{
|
156 |
-
"cell_type": "markdown",
|
157 |
-
"metadata": {},
|
158 |
-
"source": [
|
159 |
-
"## Random Baseline"
|
160 |
-
]
|
161 |
-
},
|
162 |
-
{
|
163 |
-
"cell_type": "code",
|
164 |
-
"execution_count": 5,
|
165 |
-
"metadata": {},
|
166 |
-
"outputs": [],
|
167 |
-
"source": [
|
168 |
-
"# Start tracking emissions\n",
|
169 |
-
"tracker.start()\n",
|
170 |
-
"tracker.start_task(\"inference\")"
|
171 |
-
]
|
172 |
-
},
|
173 |
-
{
|
174 |
-
"cell_type": "code",
|
175 |
-
"execution_count": 6,
|
176 |
-
"metadata": {},
|
177 |
-
"outputs": [
|
178 |
-
{
|
179 |
-
"data": {
|
180 |
-
"text/plain": [
|
181 |
-
"[1,\n",
|
182 |
-
" 7,\n",
|
183 |
-
" 6,\n",
|
184 |
-
" 6,\n",
|
185 |
-
" 2,\n",
|
186 |
-
" 0,\n",
|
187 |
-
" 1,\n",
|
188 |
-
" 7,\n",
|
189 |
-
" 3,\n",
|
190 |
-
" 6,\n",
|
191 |
-
" 6,\n",
|
192 |
-
" 3,\n",
|
193 |
-
" 6,\n",
|
194 |
-
" 6,\n",
|
195 |
-
" 5,\n",
|
196 |
-
" 0,\n",
|
197 |
-
" 2,\n",
|
198 |
-
" 6,\n",
|
199 |
-
" 2,\n",
|
200 |
-
" 6,\n",
|
201 |
-
" 5,\n",
|
202 |
-
" 4,\n",
|
203 |
-
" 1,\n",
|
204 |
-
" 3,\n",
|
205 |
-
" 6,\n",
|
206 |
-
" 4,\n",
|
207 |
-
" 2,\n",
|
208 |
-
" 1,\n",
|
209 |
-
" 4,\n",
|
210 |
-
" 0,\n",
|
211 |
-
" 3,\n",
|
212 |
-
" 4,\n",
|
213 |
-
" 1,\n",
|
214 |
-
" 5,\n",
|
215 |
-
" 5,\n",
|
216 |
-
" 1,\n",
|
217 |
-
" 2,\n",
|
218 |
-
" 7,\n",
|
219 |
-
" 6,\n",
|
220 |
-
" 1,\n",
|
221 |
-
" 3,\n",
|
222 |
-
" 1,\n",
|
223 |
-
" 7,\n",
|
224 |
-
" 7,\n",
|
225 |
-
" 0,\n",
|
226 |
-
" 0,\n",
|
227 |
-
" 3,\n",
|
228 |
-
" 3,\n",
|
229 |
-
" 3,\n",
|
230 |
-
" 4,\n",
|
231 |
-
" 1,\n",
|
232 |
-
" 4,\n",
|
233 |
-
" 4,\n",
|
234 |
-
" 1,\n",
|
235 |
-
" 4,\n",
|
236 |
-
" 5,\n",
|
237 |
-
" 6,\n",
|
238 |
-
" 1,\n",
|
239 |
-
" 2,\n",
|
240 |
-
" 2,\n",
|
241 |
-
" 2,\n",
|
242 |
-
" 5,\n",
|
243 |
-
" 2,\n",
|
244 |
-
" 7,\n",
|
245 |
-
" 2,\n",
|
246 |
-
" 7,\n",
|
247 |
-
" 7,\n",
|
248 |
-
" 6,\n",
|
249 |
-
" 4,\n",
|
250 |
-
" 2,\n",
|
251 |
-
" 0,\n",
|
252 |
-
" 1,\n",
|
253 |
-
" 6,\n",
|
254 |
-
" 3,\n",
|
255 |
-
" 2,\n",
|
256 |
-
" 5,\n",
|
257 |
-
" 5,\n",
|
258 |
-
" 2,\n",
|
259 |
-
" 0,\n",
|
260 |
-
" 7,\n",
|
261 |
-
" 0,\n",
|
262 |
-
" 1,\n",
|
263 |
-
" 5,\n",
|
264 |
-
" 5,\n",
|
265 |
-
" 7,\n",
|
266 |
-
" 4,\n",
|
267 |
-
" 6,\n",
|
268 |
-
" 7,\n",
|
269 |
-
" 1,\n",
|
270 |
-
" 7,\n",
|
271 |
-
" 1,\n",
|
272 |
-
" 0,\n",
|
273 |
-
" 3,\n",
|
274 |
-
" 4,\n",
|
275 |
-
" 2,\n",
|
276 |
-
" 5,\n",
|
277 |
-
" 3,\n",
|
278 |
-
" 3,\n",
|
279 |
-
" 3,\n",
|
280 |
-
" 2,\n",
|
281 |
-
" 2,\n",
|
282 |
-
" 1,\n",
|
283 |
-
" 0,\n",
|
284 |
-
" 4,\n",
|
285 |
-
" 5,\n",
|
286 |
-
" 7,\n",
|
287 |
-
" 0,\n",
|
288 |
-
" 3,\n",
|
289 |
-
" 1,\n",
|
290 |
-
" 4,\n",
|
291 |
-
" 6,\n",
|
292 |
-
" 0,\n",
|
293 |
-
" 7,\n",
|
294 |
-
" 1,\n",
|
295 |
-
" 1,\n",
|
296 |
-
" 2,\n",
|
297 |
-
" 2,\n",
|
298 |
-
" 4,\n",
|
299 |
-
" 0,\n",
|
300 |
-
" 4,\n",
|
301 |
-
" 3,\n",
|
302 |
-
" 4,\n",
|
303 |
-
" 4,\n",
|
304 |
-
" 2,\n",
|
305 |
-
" 2,\n",
|
306 |
-
" 3,\n",
|
307 |
-
" 3,\n",
|
308 |
-
" 7,\n",
|
309 |
-
" 4,\n",
|
310 |
-
" 7,\n",
|
311 |
-
" 6,\n",
|
312 |
-
" 4,\n",
|
313 |
-
" 5,\n",
|
314 |
-
" 4,\n",
|
315 |
-
" 3,\n",
|
316 |
-
" 6,\n",
|
317 |
-
" 0,\n",
|
318 |
-
" 4,\n",
|
319 |
-
" 0,\n",
|
320 |
-
" 1,\n",
|
321 |
-
" 3,\n",
|
322 |
-
" 6,\n",
|
323 |
-
" 7,\n",
|
324 |
-
" 3,\n",
|
325 |
-
" 3,\n",
|
326 |
-
" 0,\n",
|
327 |
-
" 1,\n",
|
328 |
-
" 2,\n",
|
329 |
-
" 4,\n",
|
330 |
-
" 4,\n",
|
331 |
-
" 3,\n",
|
332 |
-
" 1,\n",
|
333 |
-
" 2,\n",
|
334 |
-
" 4,\n",
|
335 |
-
" 3,\n",
|
336 |
-
" 0,\n",
|
337 |
-
" 5,\n",
|
338 |
-
" 3,\n",
|
339 |
-
" 6,\n",
|
340 |
-
" 3,\n",
|
341 |
-
" 6,\n",
|
342 |
-
" 1,\n",
|
343 |
-
" 3,\n",
|
344 |
-
" 4,\n",
|
345 |
-
" 5,\n",
|
346 |
-
" 4,\n",
|
347 |
-
" 0,\n",
|
348 |
-
" 7,\n",
|
349 |
-
" 3,\n",
|
350 |
-
" 6,\n",
|
351 |
-
" 7,\n",
|
352 |
-
" 4,\n",
|
353 |
-
" 4,\n",
|
354 |
-
" 5,\n",
|
355 |
-
" 3,\n",
|
356 |
-
" 1,\n",
|
357 |
-
" 7,\n",
|
358 |
-
" 4,\n",
|
359 |
-
" 1,\n",
|
360 |
-
" 0,\n",
|
361 |
-
" 3,\n",
|
362 |
-
" 0,\n",
|
363 |
-
" 5,\n",
|
364 |
-
" 3,\n",
|
365 |
-
" 6,\n",
|
366 |
-
" 3,\n",
|
367 |
-
" 0,\n",
|
368 |
-
" 7,\n",
|
369 |
-
" 2,\n",
|
370 |
-
" 0,\n",
|
371 |
-
" 4,\n",
|
372 |
-
" 1,\n",
|
373 |
-
" 2,\n",
|
374 |
-
" 6,\n",
|
375 |
-
" 3,\n",
|
376 |
-
" 4,\n",
|
377 |
-
" 4,\n",
|
378 |
-
" 5,\n",
|
379 |
-
" 1,\n",
|
380 |
-
" 5,\n",
|
381 |
-
" 4,\n",
|
382 |
-
" 0,\n",
|
383 |
-
" 1,\n",
|
384 |
-
" 7,\n",
|
385 |
-
" 3,\n",
|
386 |
-
" 6,\n",
|
387 |
-
" 0,\n",
|
388 |
-
" 7,\n",
|
389 |
-
" 4,\n",
|
390 |
-
" 6,\n",
|
391 |
-
" 3,\n",
|
392 |
-
" 0,\n",
|
393 |
-
" 0,\n",
|
394 |
-
" 4,\n",
|
395 |
-
" 6,\n",
|
396 |
-
" 6,\n",
|
397 |
-
" 4,\n",
|
398 |
-
" 0,\n",
|
399 |
-
" 5,\n",
|
400 |
-
" 7,\n",
|
401 |
-
" 5,\n",
|
402 |
-
" 1,\n",
|
403 |
-
" 3,\n",
|
404 |
-
" 6,\n",
|
405 |
-
" 2,\n",
|
406 |
-
" 3,\n",
|
407 |
-
" 2,\n",
|
408 |
-
" 4,\n",
|
409 |
-
" 5,\n",
|
410 |
-
" 1,\n",
|
411 |
-
" 5,\n",
|
412 |
-
" 0,\n",
|
413 |
-
" 3,\n",
|
414 |
-
" 3,\n",
|
415 |
-
" 0,\n",
|
416 |
-
" 0,\n",
|
417 |
-
" 6,\n",
|
418 |
-
" 6,\n",
|
419 |
-
" 2,\n",
|
420 |
-
" 0,\n",
|
421 |
-
" 7,\n",
|
422 |
-
" 4,\n",
|
423 |
-
" 5,\n",
|
424 |
-
" 7,\n",
|
425 |
-
" 1,\n",
|
426 |
-
" 0,\n",
|
427 |
-
" 4,\n",
|
428 |
-
" 5,\n",
|
429 |
-
" 1,\n",
|
430 |
-
" 7,\n",
|
431 |
-
" 0,\n",
|
432 |
-
" 7,\n",
|
433 |
-
" 2,\n",
|
434 |
-
" 6,\n",
|
435 |
-
" 1,\n",
|
436 |
-
" 3,\n",
|
437 |
-
" 5,\n",
|
438 |
-
" 5,\n",
|
439 |
-
" 6,\n",
|
440 |
-
" 5,\n",
|
441 |
-
" 4,\n",
|
442 |
-
" 3,\n",
|
443 |
-
" 7,\n",
|
444 |
-
" 4,\n",
|
445 |
-
" 3,\n",
|
446 |
-
" 5,\n",
|
447 |
-
" 5,\n",
|
448 |
-
" 7,\n",
|
449 |
-
" 2,\n",
|
450 |
-
" 6,\n",
|
451 |
-
" 1,\n",
|
452 |
-
" 5,\n",
|
453 |
-
" 0,\n",
|
454 |
-
" 3,\n",
|
455 |
-
" 4,\n",
|
456 |
-
" 2,\n",
|
457 |
-
" 3,\n",
|
458 |
-
" 7,\n",
|
459 |
-
" 0,\n",
|
460 |
-
" 1,\n",
|
461 |
-
" 7,\n",
|
462 |
-
" 6,\n",
|
463 |
-
" 7,\n",
|
464 |
-
" 7,\n",
|
465 |
-
" 5,\n",
|
466 |
-
" 6,\n",
|
467 |
-
" 3,\n",
|
468 |
-
" 2,\n",
|
469 |
-
" 3,\n",
|
470 |
-
" 0,\n",
|
471 |
-
" 4,\n",
|
472 |
-
" 3,\n",
|
473 |
-
" 5,\n",
|
474 |
-
" 6,\n",
|
475 |
-
" 0,\n",
|
476 |
-
" 0,\n",
|
477 |
-
" 6,\n",
|
478 |
-
" 6,\n",
|
479 |
-
" 1,\n",
|
480 |
-
" 4,\n",
|
481 |
-
" 0,\n",
|
482 |
-
" 4,\n",
|
483 |
-
" 2,\n",
|
484 |
-
" 7,\n",
|
485 |
-
" 5,\n",
|
486 |
-
" 7,\n",
|
487 |
-
" 6,\n",
|
488 |
-
" 3,\n",
|
489 |
-
" 5,\n",
|
490 |
-
" 6,\n",
|
491 |
-
" 0,\n",
|
492 |
-
" 4,\n",
|
493 |
-
" 5,\n",
|
494 |
-
" 6,\n",
|
495 |
-
" 1,\n",
|
496 |
-
" 2,\n",
|
497 |
-
" 1,\n",
|
498 |
-
" 5,\n",
|
499 |
-
" 3,\n",
|
500 |
-
" 0,\n",
|
501 |
-
" 3,\n",
|
502 |
-
" 7,\n",
|
503 |
-
" 1,\n",
|
504 |
-
" 0,\n",
|
505 |
-
" 7,\n",
|
506 |
-
" 0,\n",
|
507 |
-
" 1,\n",
|
508 |
-
" 0,\n",
|
509 |
-
" 4,\n",
|
510 |
-
" 1,\n",
|
511 |
-
" 1,\n",
|
512 |
-
" 0,\n",
|
513 |
-
" 7,\n",
|
514 |
-
" 1,\n",
|
515 |
-
" 0,\n",
|
516 |
-
" 7,\n",
|
517 |
-
" 6,\n",
|
518 |
-
" 2,\n",
|
519 |
-
" 3,\n",
|
520 |
-
" 7,\n",
|
521 |
-
" 4,\n",
|
522 |
-
" 3,\n",
|
523 |
-
" 4,\n",
|
524 |
-
" 3,\n",
|
525 |
-
" 3,\n",
|
526 |
-
" 2,\n",
|
527 |
-
" 5,\n",
|
528 |
-
" 1,\n",
|
529 |
-
" 5,\n",
|
530 |
-
" 1,\n",
|
531 |
-
" 7,\n",
|
532 |
-
" 3,\n",
|
533 |
-
" 2,\n",
|
534 |
-
" 6,\n",
|
535 |
-
" 4,\n",
|
536 |
-
" 4,\n",
|
537 |
-
" 1,\n",
|
538 |
-
" 2,\n",
|
539 |
-
" 6,\n",
|
540 |
-
" 7,\n",
|
541 |
-
" 2,\n",
|
542 |
-
" 7,\n",
|
543 |
-
" 1,\n",
|
544 |
-
" 3,\n",
|
545 |
-
" 5,\n",
|
546 |
-
" 2,\n",
|
547 |
-
" 6,\n",
|
548 |
-
" 4,\n",
|
549 |
-
" 6,\n",
|
550 |
-
" 7,\n",
|
551 |
-
" 0,\n",
|
552 |
-
" 5,\n",
|
553 |
-
" 1,\n",
|
554 |
-
" 6,\n",
|
555 |
-
" 5,\n",
|
556 |
-
" 3,\n",
|
557 |
-
" 6,\n",
|
558 |
-
" 5,\n",
|
559 |
-
" 4,\n",
|
560 |
-
" 7,\n",
|
561 |
-
" 6,\n",
|
562 |
-
" 5,\n",
|
563 |
-
" 4,\n",
|
564 |
-
" 3,\n",
|
565 |
-
" 0,\n",
|
566 |
-
" 0,\n",
|
567 |
-
" 1,\n",
|
568 |
-
" 7,\n",
|
569 |
-
" 7,\n",
|
570 |
-
" 6,\n",
|
571 |
-
" 1,\n",
|
572 |
-
" 4,\n",
|
573 |
-
" 5,\n",
|
574 |
-
" 6,\n",
|
575 |
-
" 1,\n",
|
576 |
-
" 5,\n",
|
577 |
-
" 1,\n",
|
578 |
-
" 2,\n",
|
579 |
-
" 6,\n",
|
580 |
-
" 2,\n",
|
581 |
-
" 6,\n",
|
582 |
-
" 0,\n",
|
583 |
-
" 2,\n",
|
584 |
-
" 1,\n",
|
585 |
-
" 5,\n",
|
586 |
-
" 5,\n",
|
587 |
-
" 1,\n",
|
588 |
-
" 7,\n",
|
589 |
-
" 0,\n",
|
590 |
-
" 5,\n",
|
591 |
-
" 5,\n",
|
592 |
-
" 1,\n",
|
593 |
-
" 7,\n",
|
594 |
-
" 7,\n",
|
595 |
-
" 2,\n",
|
596 |
-
" 1,\n",
|
597 |
-
" 0,\n",
|
598 |
-
" 1,\n",
|
599 |
-
" 0,\n",
|
600 |
-
" 5,\n",
|
601 |
-
" 4,\n",
|
602 |
-
" 2,\n",
|
603 |
-
" 7,\n",
|
604 |
-
" 4,\n",
|
605 |
-
" 3,\n",
|
606 |
-
" 6,\n",
|
607 |
-
" 7,\n",
|
608 |
-
" 5,\n",
|
609 |
-
" 1,\n",
|
610 |
-
" 0,\n",
|
611 |
-
" 7,\n",
|
612 |
-
" 2,\n",
|
613 |
-
" 1,\n",
|
614 |
-
" 2,\n",
|
615 |
-
" 3,\n",
|
616 |
-
" 1,\n",
|
617 |
-
" 0,\n",
|
618 |
-
" 3,\n",
|
619 |
-
" 2,\n",
|
620 |
-
" 6,\n",
|
621 |
-
" 0,\n",
|
622 |
-
" 5,\n",
|
623 |
-
" 4,\n",
|
624 |
-
" 7,\n",
|
625 |
-
" 1,\n",
|
626 |
-
" 1,\n",
|
627 |
-
" 0,\n",
|
628 |
-
" 7,\n",
|
629 |
-
" 0,\n",
|
630 |
-
" 6,\n",
|
631 |
-
" 7,\n",
|
632 |
-
" 6,\n",
|
633 |
-
" 1,\n",
|
634 |
-
" 5,\n",
|
635 |
-
" 5,\n",
|
636 |
-
" 7,\n",
|
637 |
-
" 6,\n",
|
638 |
-
" 1,\n",
|
639 |
-
" 7,\n",
|
640 |
-
" 6,\n",
|
641 |
-
" 5,\n",
|
642 |
-
" 4,\n",
|
643 |
-
" 1,\n",
|
644 |
-
" 4,\n",
|
645 |
-
" 7,\n",
|
646 |
-
" 5,\n",
|
647 |
-
" 4,\n",
|
648 |
-
" 0,\n",
|
649 |
-
" 0,\n",
|
650 |
-
" 7,\n",
|
651 |
-
" 0,\n",
|
652 |
-
" 0,\n",
|
653 |
-
" 3,\n",
|
654 |
-
" 6,\n",
|
655 |
-
" 2,\n",
|
656 |
-
" 5,\n",
|
657 |
-
" 3,\n",
|
658 |
-
" 0,\n",
|
659 |
-
" 3,\n",
|
660 |
-
" 6,\n",
|
661 |
-
" 5,\n",
|
662 |
-
" 7,\n",
|
663 |
-
" 2,\n",
|
664 |
-
" 6,\n",
|
665 |
-
" 7,\n",
|
666 |
-
" 5,\n",
|
667 |
-
" 2,\n",
|
668 |
-
" 3,\n",
|
669 |
-
" 6,\n",
|
670 |
-
" 7,\n",
|
671 |
-
" 7,\n",
|
672 |
-
" 7,\n",
|
673 |
-
" 6,\n",
|
674 |
-
" 1,\n",
|
675 |
-
" 7,\n",
|
676 |
-
" 4,\n",
|
677 |
-
" 2,\n",
|
678 |
-
" 7,\n",
|
679 |
-
" 5,\n",
|
680 |
-
" 4,\n",
|
681 |
-
" 1,\n",
|
682 |
-
" 2,\n",
|
683 |
-
" 3,\n",
|
684 |
-
" 7,\n",
|
685 |
-
" 0,\n",
|
686 |
-
" 2,\n",
|
687 |
-
" 7,\n",
|
688 |
-
" 6,\n",
|
689 |
-
" 1,\n",
|
690 |
-
" 4,\n",
|
691 |
-
" 0,\n",
|
692 |
-
" 6,\n",
|
693 |
-
" 3,\n",
|
694 |
-
" 1,\n",
|
695 |
-
" 0,\n",
|
696 |
-
" 3,\n",
|
697 |
-
" 4,\n",
|
698 |
-
" 7,\n",
|
699 |
-
" 7,\n",
|
700 |
-
" 4,\n",
|
701 |
-
" 2,\n",
|
702 |
-
" 1,\n",
|
703 |
-
" 0,\n",
|
704 |
-
" 5,\n",
|
705 |
-
" 1,\n",
|
706 |
-
" 7,\n",
|
707 |
-
" 4,\n",
|
708 |
-
" 6,\n",
|
709 |
-
" 7,\n",
|
710 |
-
" 7,\n",
|
711 |
-
" 3,\n",
|
712 |
-
" 4,\n",
|
713 |
-
" 3,\n",
|
714 |
-
" 5,\n",
|
715 |
-
" 4,\n",
|
716 |
-
" 4,\n",
|
717 |
-
" 5,\n",
|
718 |
-
" 0,\n",
|
719 |
-
" 1,\n",
|
720 |
-
" 3,\n",
|
721 |
-
" 7,\n",
|
722 |
-
" 5,\n",
|
723 |
-
" 4,\n",
|
724 |
-
" 7,\n",
|
725 |
-
" 3,\n",
|
726 |
-
" 3,\n",
|
727 |
-
" 3,\n",
|
728 |
-
" 5,\n",
|
729 |
-
" 3,\n",
|
730 |
-
" 3,\n",
|
731 |
-
" 4,\n",
|
732 |
-
" 0,\n",
|
733 |
-
" 1,\n",
|
734 |
-
" 7,\n",
|
735 |
-
" 4,\n",
|
736 |
-
" 7,\n",
|
737 |
-
" 7,\n",
|
738 |
-
" 5,\n",
|
739 |
-
" 0,\n",
|
740 |
-
" 0,\n",
|
741 |
-
" 5,\n",
|
742 |
-
" 2,\n",
|
743 |
-
" 6,\n",
|
744 |
-
" 2,\n",
|
745 |
-
" 6,\n",
|
746 |
-
" 7,\n",
|
747 |
-
" 6,\n",
|
748 |
-
" 5,\n",
|
749 |
-
" 7,\n",
|
750 |
-
" 5,\n",
|
751 |
-
" 7,\n",
|
752 |
-
" 1,\n",
|
753 |
-
" 6,\n",
|
754 |
-
" 6,\n",
|
755 |
-
" 0,\n",
|
756 |
-
" 4,\n",
|
757 |
-
" 7,\n",
|
758 |
-
" 3,\n",
|
759 |
-
" 0,\n",
|
760 |
-
" 0,\n",
|
761 |
-
" 2,\n",
|
762 |
-
" 5,\n",
|
763 |
-
" 2,\n",
|
764 |
-
" 3,\n",
|
765 |
-
" 7,\n",
|
766 |
-
" 1,\n",
|
767 |
-
" 0,\n",
|
768 |
-
" 3,\n",
|
769 |
-
" 0,\n",
|
770 |
-
" 0,\n",
|
771 |
-
" 3,\n",
|
772 |
-
" 3,\n",
|
773 |
-
" 7,\n",
|
774 |
-
" 3,\n",
|
775 |
-
" 0,\n",
|
776 |
-
" 1,\n",
|
777 |
-
" 1,\n",
|
778 |
-
" 6,\n",
|
779 |
-
" 0,\n",
|
780 |
-
" 0,\n",
|
781 |
-
" 5,\n",
|
782 |
-
" 0,\n",
|
783 |
-
" 3,\n",
|
784 |
-
" 4,\n",
|
785 |
-
" 6,\n",
|
786 |
-
" 7,\n",
|
787 |
-
" 4,\n",
|
788 |
-
" 0,\n",
|
789 |
-
" 4,\n",
|
790 |
-
" 4,\n",
|
791 |
-
" 5,\n",
|
792 |
-
" 4,\n",
|
793 |
-
" 4,\n",
|
794 |
-
" 3,\n",
|
795 |
-
" 6,\n",
|
796 |
-
" 5,\n",
|
797 |
-
" 2,\n",
|
798 |
-
" 0,\n",
|
799 |
-
" 6,\n",
|
800 |
-
" 0,\n",
|
801 |
-
" 6,\n",
|
802 |
-
" 4,\n",
|
803 |
-
" 3,\n",
|
804 |
-
" 5,\n",
|
805 |
-
" 7,\n",
|
806 |
-
" 7,\n",
|
807 |
-
" 5,\n",
|
808 |
-
" 5,\n",
|
809 |
-
" 1,\n",
|
810 |
-
" 5,\n",
|
811 |
-
" 2,\n",
|
812 |
-
" 7,\n",
|
813 |
-
" 7,\n",
|
814 |
-
" 6,\n",
|
815 |
-
" 6,\n",
|
816 |
-
" 7,\n",
|
817 |
-
" 6,\n",
|
818 |
-
" 5,\n",
|
819 |
-
" 2,\n",
|
820 |
-
" 4,\n",
|
821 |
-
" 0,\n",
|
822 |
-
" 4,\n",
|
823 |
-
" 4,\n",
|
824 |
-
" 7,\n",
|
825 |
-
" 5,\n",
|
826 |
-
" 2,\n",
|
827 |
-
" 7,\n",
|
828 |
-
" 0,\n",
|
829 |
-
" 6,\n",
|
830 |
-
" 0,\n",
|
831 |
-
" 2,\n",
|
832 |
-
" 6,\n",
|
833 |
-
" 6,\n",
|
834 |
-
" 2,\n",
|
835 |
-
" 3,\n",
|
836 |
-
" 0,\n",
|
837 |
-
" 5,\n",
|
838 |
-
" 0,\n",
|
839 |
-
" 5,\n",
|
840 |
-
" 7,\n",
|
841 |
-
" 2,\n",
|
842 |
-
" 7,\n",
|
843 |
-
" 4,\n",
|
844 |
-
" 7,\n",
|
845 |
-
" 4,\n",
|
846 |
-
" 0,\n",
|
847 |
-
" 7,\n",
|
848 |
-
" 1,\n",
|
849 |
-
" 4,\n",
|
850 |
-
" 5,\n",
|
851 |
-
" 0,\n",
|
852 |
-
" 5,\n",
|
853 |
-
" 5,\n",
|
854 |
-
" 2,\n",
|
855 |
-
" 0,\n",
|
856 |
-
" 2,\n",
|
857 |
-
" 5,\n",
|
858 |
-
" 5,\n",
|
859 |
-
" 6,\n",
|
860 |
-
" 3,\n",
|
861 |
-
" 4,\n",
|
862 |
-
" 1,\n",
|
863 |
-
" 7,\n",
|
864 |
-
" 7,\n",
|
865 |
-
" 2,\n",
|
866 |
-
" 3,\n",
|
867 |
-
" 2,\n",
|
868 |
-
" 5,\n",
|
869 |
-
" 0,\n",
|
870 |
-
" 7,\n",
|
871 |
-
" 2,\n",
|
872 |
-
" 3,\n",
|
873 |
-
" 7,\n",
|
874 |
-
" 2,\n",
|
875 |
-
" 4,\n",
|
876 |
-
" 0,\n",
|
877 |
-
" 5,\n",
|
878 |
-
" 7,\n",
|
879 |
-
" 3,\n",
|
880 |
-
" 6,\n",
|
881 |
-
" 7,\n",
|
882 |
-
" 6,\n",
|
883 |
-
" 4,\n",
|
884 |
-
" 3,\n",
|
885 |
-
" 6,\n",
|
886 |
-
" 5,\n",
|
887 |
-
" 4,\n",
|
888 |
-
" 0,\n",
|
889 |
-
" 3,\n",
|
890 |
-
" 4,\n",
|
891 |
-
" 3,\n",
|
892 |
-
" 5,\n",
|
893 |
-
" 2,\n",
|
894 |
-
" 4,\n",
|
895 |
-
" 0,\n",
|
896 |
-
" 3,\n",
|
897 |
-
" 6,\n",
|
898 |
-
" 1,\n",
|
899 |
-
" 3,\n",
|
900 |
-
" 1,\n",
|
901 |
-
" 4,\n",
|
902 |
-
" 3,\n",
|
903 |
-
" 3,\n",
|
904 |
-
" 3,\n",
|
905 |
-
" 0,\n",
|
906 |
-
" 7,\n",
|
907 |
-
" 6,\n",
|
908 |
-
" 2,\n",
|
909 |
-
" 4,\n",
|
910 |
-
" 6,\n",
|
911 |
-
" 5,\n",
|
912 |
-
" 4,\n",
|
913 |
-
" 1,\n",
|
914 |
-
" 7,\n",
|
915 |
-
" 6,\n",
|
916 |
-
" 1,\n",
|
917 |
-
" 4,\n",
|
918 |
-
" 3,\n",
|
919 |
-
" 0,\n",
|
920 |
-
" 7,\n",
|
921 |
-
" 3,\n",
|
922 |
-
" 1,\n",
|
923 |
-
" 2,\n",
|
924 |
-
" 1,\n",
|
925 |
-
" 6,\n",
|
926 |
-
" 4,\n",
|
927 |
-
" 7,\n",
|
928 |
-
" 1,\n",
|
929 |
-
" 7,\n",
|
930 |
-
" 1,\n",
|
931 |
-
" 5,\n",
|
932 |
-
" 1,\n",
|
933 |
-
" 6,\n",
|
934 |
-
" 3,\n",
|
935 |
-
" 0,\n",
|
936 |
-
" 2,\n",
|
937 |
-
" 6,\n",
|
938 |
-
" 7,\n",
|
939 |
-
" 7,\n",
|
940 |
-
" 0,\n",
|
941 |
-
" 1,\n",
|
942 |
-
" 4,\n",
|
943 |
-
" 0,\n",
|
944 |
-
" 4,\n",
|
945 |
-
" 5,\n",
|
946 |
-
" 3,\n",
|
947 |
-
" 6,\n",
|
948 |
-
" 2,\n",
|
949 |
-
" 3,\n",
|
950 |
-
" 4,\n",
|
951 |
-
" 1,\n",
|
952 |
-
" 6,\n",
|
953 |
-
" 2,\n",
|
954 |
-
" 4,\n",
|
955 |
-
" 4,\n",
|
956 |
-
" 6,\n",
|
957 |
-
" 4,\n",
|
958 |
-
" 5,\n",
|
959 |
-
" 7,\n",
|
960 |
-
" 1,\n",
|
961 |
-
" 7,\n",
|
962 |
-
" 7,\n",
|
963 |
-
" 4,\n",
|
964 |
-
" 7,\n",
|
965 |
-
" 4,\n",
|
966 |
-
" 3,\n",
|
967 |
-
" 3,\n",
|
968 |
-
" 6,\n",
|
969 |
-
" 1,\n",
|
970 |
-
" 2,\n",
|
971 |
-
" 0,\n",
|
972 |
-
" 0,\n",
|
973 |
-
" 0,\n",
|
974 |
-
" 2,\n",
|
975 |
-
" 5,\n",
|
976 |
-
" 6,\n",
|
977 |
-
" 5,\n",
|
978 |
-
" 7,\n",
|
979 |
-
" 5,\n",
|
980 |
-
" 7,\n",
|
981 |
-
" 1,\n",
|
982 |
-
" 1,\n",
|
983 |
-
" 2,\n",
|
984 |
-
" 1,\n",
|
985 |
-
" 6,\n",
|
986 |
-
" 5,\n",
|
987 |
-
" 7,\n",
|
988 |
-
" 0,\n",
|
989 |
-
" 0,\n",
|
990 |
-
" 5,\n",
|
991 |
-
" 5,\n",
|
992 |
-
" 0,\n",
|
993 |
-
" 3,\n",
|
994 |
-
" 7,\n",
|
995 |
-
" 5,\n",
|
996 |
-
" 2,\n",
|
997 |
-
" 5,\n",
|
998 |
-
" 4,\n",
|
999 |
-
" 2,\n",
|
1000 |
-
" 3,\n",
|
1001 |
-
" 6,\n",
|
1002 |
-
" 2,\n",
|
1003 |
-
" 3,\n",
|
1004 |
-
" 6,\n",
|
1005 |
-
" 0,\n",
|
1006 |
-
" 0,\n",
|
1007 |
-
" 2,\n",
|
1008 |
-
" 6,\n",
|
1009 |
-
" 0,\n",
|
1010 |
-
" 1,\n",
|
1011 |
-
" 3,\n",
|
1012 |
-
" 3,\n",
|
1013 |
-
" 6,\n",
|
1014 |
-
" 4,\n",
|
1015 |
-
" 6,\n",
|
1016 |
-
" 4,\n",
|
1017 |
-
" 6,\n",
|
1018 |
-
" 0,\n",
|
1019 |
-
" 0,\n",
|
1020 |
-
" 2,\n",
|
1021 |
-
" 3,\n",
|
1022 |
-
" 6,\n",
|
1023 |
-
" 2,\n",
|
1024 |
-
" 2,\n",
|
1025 |
-
" 6,\n",
|
1026 |
-
" 6,\n",
|
1027 |
-
" 2,\n",
|
1028 |
-
" 4,\n",
|
1029 |
-
" 3,\n",
|
1030 |
-
" 3,\n",
|
1031 |
-
" 6,\n",
|
1032 |
-
" 7,\n",
|
1033 |
-
" 7,\n",
|
1034 |
-
" 1,\n",
|
1035 |
-
" 1,\n",
|
1036 |
-
" 7,\n",
|
1037 |
-
" 7,\n",
|
1038 |
-
" 6,\n",
|
1039 |
-
" 1,\n",
|
1040 |
-
" 7,\n",
|
1041 |
-
" 0,\n",
|
1042 |
-
" 0,\n",
|
1043 |
-
" 2,\n",
|
1044 |
-
" 4,\n",
|
1045 |
-
" 2,\n",
|
1046 |
-
" 2,\n",
|
1047 |
-
" 3,\n",
|
1048 |
-
" 0,\n",
|
1049 |
-
" 1,\n",
|
1050 |
-
" 4,\n",
|
1051 |
-
" 0,\n",
|
1052 |
-
" 4,\n",
|
1053 |
-
" 6,\n",
|
1054 |
-
" 5,\n",
|
1055 |
-
" 3,\n",
|
1056 |
-
" 2,\n",
|
1057 |
-
" 3,\n",
|
1058 |
-
" 2,\n",
|
1059 |
-
" 3,\n",
|
1060 |
-
" 6,\n",
|
1061 |
-
" 2,\n",
|
1062 |
-
" 1,\n",
|
1063 |
-
" 4,\n",
|
1064 |
-
" 7,\n",
|
1065 |
-
" 6,\n",
|
1066 |
-
" 4,\n",
|
1067 |
-
" 5,\n",
|
1068 |
-
" 6,\n",
|
1069 |
-
" 7,\n",
|
1070 |
-
" 7,\n",
|
1071 |
-
" 2,\n",
|
1072 |
-
" 0,\n",
|
1073 |
-
" 5,\n",
|
1074 |
-
" 5,\n",
|
1075 |
-
" 0,\n",
|
1076 |
-
" 3,\n",
|
1077 |
-
" 6,\n",
|
1078 |
-
" 6,\n",
|
1079 |
-
" 5,\n",
|
1080 |
-
" 4,\n",
|
1081 |
-
" 4,\n",
|
1082 |
-
" 7,\n",
|
1083 |
-
" 0,\n",
|
1084 |
-
" 5,\n",
|
1085 |
-
" 1,\n",
|
1086 |
-
" 7,\n",
|
1087 |
-
" 0,\n",
|
1088 |
-
" 3,\n",
|
1089 |
-
" 1,\n",
|
1090 |
-
" 7,\n",
|
1091 |
-
" 0,\n",
|
1092 |
-
" 1,\n",
|
1093 |
-
" 4,\n",
|
1094 |
-
" 7,\n",
|
1095 |
-
" 5,\n",
|
1096 |
-
" 0,\n",
|
1097 |
-
" 4,\n",
|
1098 |
-
" 0,\n",
|
1099 |
-
" 0,\n",
|
1100 |
-
" 1,\n",
|
1101 |
-
" 0,\n",
|
1102 |
-
" 6,\n",
|
1103 |
-
" 4,\n",
|
1104 |
-
" 0,\n",
|
1105 |
-
" 5,\n",
|
1106 |
-
" 4,\n",
|
1107 |
-
" 6,\n",
|
1108 |
-
" 6,\n",
|
1109 |
-
" 7,\n",
|
1110 |
-
" 2,\n",
|
1111 |
-
" 6,\n",
|
1112 |
-
" 2,\n",
|
1113 |
-
" 6,\n",
|
1114 |
-
" 0,\n",
|
1115 |
-
" 3,\n",
|
1116 |
-
" 2,\n",
|
1117 |
-
" 2,\n",
|
1118 |
-
" 1,\n",
|
1119 |
-
" 5,\n",
|
1120 |
-
" 4,\n",
|
1121 |
-
" 7,\n",
|
1122 |
-
" 6,\n",
|
1123 |
-
" 6,\n",
|
1124 |
-
" 2,\n",
|
1125 |
-
" 5,\n",
|
1126 |
-
" 5,\n",
|
1127 |
-
" 5,\n",
|
1128 |
-
" 0,\n",
|
1129 |
-
" 3,\n",
|
1130 |
-
" 5,\n",
|
1131 |
-
" 4,\n",
|
1132 |
-
" 5,\n",
|
1133 |
-
" 7,\n",
|
1134 |
-
" 5,\n",
|
1135 |
-
" 0,\n",
|
1136 |
-
" 5,\n",
|
1137 |
-
" 0,\n",
|
1138 |
-
" 0,\n",
|
1139 |
-
" 2,\n",
|
1140 |
-
" 0,\n",
|
1141 |
-
" 2,\n",
|
1142 |
-
" 1,\n",
|
1143 |
-
" 0,\n",
|
1144 |
-
" 2,\n",
|
1145 |
-
" 4,\n",
|
1146 |
-
" 3,\n",
|
1147 |
-
" 4,\n",
|
1148 |
-
" 1,\n",
|
1149 |
-
" 7,\n",
|
1150 |
-
" 2,\n",
|
1151 |
-
" 1,\n",
|
1152 |
-
" 0,\n",
|
1153 |
-
" 3,\n",
|
1154 |
-
" 0,\n",
|
1155 |
-
" 3,\n",
|
1156 |
-
" 1,\n",
|
1157 |
-
" 1,\n",
|
1158 |
-
" 0,\n",
|
1159 |
-
" 5,\n",
|
1160 |
-
" 3,\n",
|
1161 |
-
" 1,\n",
|
1162 |
-
" 2,\n",
|
1163 |
-
" 5,\n",
|
1164 |
-
" 6,\n",
|
1165 |
-
" 7,\n",
|
1166 |
-
" 6,\n",
|
1167 |
-
" 7,\n",
|
1168 |
-
" 0,\n",
|
1169 |
-
" 2,\n",
|
1170 |
-
" 6,\n",
|
1171 |
-
" 3,\n",
|
1172 |
-
" 1,\n",
|
1173 |
-
" 5,\n",
|
1174 |
-
" 4,\n",
|
1175 |
-
" 2,\n",
|
1176 |
-
" 4,\n",
|
1177 |
-
" 6,\n",
|
1178 |
-
" 5,\n",
|
1179 |
-
" 2,\n",
|
1180 |
-
" 7,\n",
|
1181 |
-
" ...]"
|
1182 |
-
]
|
1183 |
-
},
|
1184 |
-
"execution_count": 6,
|
1185 |
-
"metadata": {},
|
1186 |
-
"output_type": "execute_result"
|
1187 |
-
}
|
1188 |
-
],
|
1189 |
-
"source": [
|
1190 |
-
"\n",
|
1191 |
-
"#--------------------------------------------------------------------------------------------\n",
|
1192 |
-
"# YOUR MODEL INFERENCE CODE HERE\n",
|
1193 |
-
"# Update the code below to replace the random baseline by your model inference within the inference pass where the energy consumption and emissions are tracked.\n",
|
1194 |
-
"#-------------------------------------------------------------------------------------------- \n",
|
1195 |
-
"\n",
|
1196 |
-
"# Make random predictions (placeholder for actual model inference)\n",
|
1197 |
-
"true_labels = test_dataset[\"label\"]\n",
|
1198 |
-
"predictions = [random.randint(0, 1) for _ in range(len(true_labels))]\n",
|
1199 |
-
"\n",
|
1200 |
-
"predictions\n",
|
1201 |
-
"\n",
|
1202 |
-
"#--------------------------------------------------------------------------------------------\n",
|
1203 |
-
"# YOUR MODEL INFERENCE STOPS HERE\n",
|
1204 |
-
"#-------------------------------------------------------------------------------------------- "
|
1205 |
-
]
|
1206 |
-
},
|
1207 |
-
{
|
1208 |
-
"cell_type": "code",
|
1209 |
-
"execution_count": 8,
|
1210 |
-
"metadata": {},
|
1211 |
-
"outputs": [
|
1212 |
-
{
|
1213 |
-
"name": "stderr",
|
1214 |
-
"output_type": "stream",
|
1215 |
-
"text": [
|
1216 |
-
"[codecarbon WARNING @ 19:53:32] Background scheduler didn't run for a long period (47s), results might be inaccurate\n",
|
1217 |
-
"[codecarbon INFO @ 19:53:32] Energy consumed for RAM : 0.000156 kWh. RAM Power : 11.755242347717285 W\n",
|
1218 |
-
"[codecarbon INFO @ 19:53:32] Delta energy consumed for CPU with constant : 0.000564 kWh, power : 42.5 W\n",
|
1219 |
-
"[codecarbon INFO @ 19:53:32] Energy consumed for All CPU : 0.000564 kWh\n",
|
1220 |
-
"[codecarbon INFO @ 19:53:32] 0.000720 kWh of electricity used since the beginning.\n"
|
1221 |
-
]
|
1222 |
-
},
|
1223 |
-
{
|
1224 |
-
"data": {
|
1225 |
-
"text/plain": [
|
1226 |
-
"EmissionsData(timestamp='2025-01-21T19:53:32', project_name='codecarbon', run_id='908f2e7e-4bb2-4991-a0f6-56bf8d7eda21', experiment_id='5b0fa12a-3dd7-45bb-9766-cc326314d9f1', duration=47.736408500000834, emissions=4.032368007471064e-05, emissions_rate=8.444466886328872e-07, cpu_power=42.5, gpu_power=0.0, ram_power=11.755242347717285, cpu_energy=0.0005636615353475565, gpu_energy=0, ram_energy=0.00015590305493261682, energy_consumed=0.0007195645902801733, country_name='France', country_iso_code='FRA', region='île-de-france', cloud_provider='', cloud_region='', os='Windows-11-10.0.22631-SP0', python_version='3.12.7', codecarbon_version='3.0.0_rc0', cpu_count=12, cpu_model='13th Gen Intel(R) Core(TM) i7-1365U', gpu_count=None, gpu_model=None, longitude=2.3494, latitude=48.8558, ram_total_size=31.347312927246094, tracking_mode='machine', on_cloud='N', pue=1.0)"
|
1227 |
-
]
|
1228 |
-
},
|
1229 |
-
"execution_count": 8,
|
1230 |
-
"metadata": {},
|
1231 |
-
"output_type": "execute_result"
|
1232 |
-
}
|
1233 |
-
],
|
1234 |
-
"source": [
|
1235 |
-
"# Stop tracking emissions\n",
|
1236 |
-
"emissions_data = tracker.stop_task()\n",
|
1237 |
-
"emissions_data"
|
1238 |
-
]
|
1239 |
-
},
|
1240 |
-
{
|
1241 |
-
"cell_type": "code",
|
1242 |
-
"execution_count": 9,
|
1243 |
-
"metadata": {},
|
1244 |
-
"outputs": [
|
1245 |
-
{
|
1246 |
-
"data": {
|
1247 |
-
"text/plain": [
|
1248 |
-
"0.10090237899917966"
|
1249 |
-
]
|
1250 |
-
},
|
1251 |
-
"execution_count": 9,
|
1252 |
-
"metadata": {},
|
1253 |
-
"output_type": "execute_result"
|
1254 |
-
}
|
1255 |
-
],
|
1256 |
-
"source": [
|
1257 |
-
"# Calculate accuracy\n",
|
1258 |
-
"accuracy = accuracy_score(true_labels, predictions)\n",
|
1259 |
-
"accuracy"
|
1260 |
-
]
|
1261 |
-
},
|
1262 |
-
{
|
1263 |
-
"cell_type": "code",
|
1264 |
-
"execution_count": 10,
|
1265 |
-
"metadata": {},
|
1266 |
-
"outputs": [
|
1267 |
-
{
|
1268 |
-
"data": {
|
1269 |
-
"text/plain": [
|
1270 |
-
"{'submission_timestamp': '2025-01-21T19:53:46.639165',\n",
|
1271 |
-
" 'accuracy': 0.10090237899917966,\n",
|
1272 |
-
" 'energy_consumed_wh': 0.7195645902801733,\n",
|
1273 |
-
" 'emissions_gco2eq': 0.040323680074710634,\n",
|
1274 |
-
" 'emissions_data': {'run_id': '908f2e7e-4bb2-4991-a0f6-56bf8d7eda21',\n",
|
1275 |
-
" 'duration': 47.736408500000834,\n",
|
1276 |
-
" 'emissions': 4.032368007471064e-05,\n",
|
1277 |
-
" 'emissions_rate': 8.444466886328872e-07,\n",
|
1278 |
-
" 'cpu_power': 42.5,\n",
|
1279 |
-
" 'gpu_power': 0.0,\n",
|
1280 |
-
" 'ram_power': 11.755242347717285,\n",
|
1281 |
-
" 'cpu_energy': 0.0005636615353475565,\n",
|
1282 |
-
" 'gpu_energy': 0,\n",
|
1283 |
-
" 'ram_energy': 0.00015590305493261682,\n",
|
1284 |
-
" 'energy_consumed': 0.0007195645902801733,\n",
|
1285 |
-
" 'country_name': 'France',\n",
|
1286 |
-
" 'country_iso_code': 'FRA',\n",
|
1287 |
-
" 'region': 'île-de-france',\n",
|
1288 |
-
" 'cloud_provider': '',\n",
|
1289 |
-
" 'cloud_region': '',\n",
|
1290 |
-
" 'os': 'Windows-11-10.0.22631-SP0',\n",
|
1291 |
-
" 'python_version': '3.12.7',\n",
|
1292 |
-
" 'codecarbon_version': '3.0.0_rc0',\n",
|
1293 |
-
" 'cpu_count': 12,\n",
|
1294 |
-
" 'cpu_model': '13th Gen Intel(R) Core(TM) i7-1365U',\n",
|
1295 |
-
" 'gpu_count': None,\n",
|
1296 |
-
" 'gpu_model': None,\n",
|
1297 |
-
" 'ram_total_size': 31.347312927246094,\n",
|
1298 |
-
" 'tracking_mode': 'machine',\n",
|
1299 |
-
" 'on_cloud': 'N',\n",
|
1300 |
-
" 'pue': 1.0},\n",
|
1301 |
-
" 'dataset_config': {'dataset_name': 'QuotaClimat/frugalaichallenge-text-train',\n",
|
1302 |
-
" 'test_size': 0.2,\n",
|
1303 |
-
" 'test_seed': 42}}"
|
1304 |
-
]
|
1305 |
-
},
|
1306 |
-
"execution_count": 10,
|
1307 |
-
"metadata": {},
|
1308 |
-
"output_type": "execute_result"
|
1309 |
-
}
|
1310 |
-
],
|
1311 |
-
"source": [
|
1312 |
-
"# Prepare results dictionary\n",
|
1313 |
-
"results = {\n",
|
1314 |
-
" \"submission_timestamp\": datetime.now().isoformat(),\n",
|
1315 |
-
" \"accuracy\": float(accuracy),\n",
|
1316 |
-
" \"energy_consumed_wh\": emissions_data.energy_consumed * 1000,\n",
|
1317 |
-
" \"emissions_gco2eq\": emissions_data.emissions * 1000,\n",
|
1318 |
-
" \"emissions_data\": clean_emissions_data(emissions_data),\n",
|
1319 |
-
" \"dataset_config\": {\n",
|
1320 |
-
" \"dataset_name\": request.dataset_name,\n",
|
1321 |
-
" \"test_size\": request.test_size,\n",
|
1322 |
-
" \"test_seed\": request.test_seed\n",
|
1323 |
-
" }\n",
|
1324 |
-
"}\n",
|
1325 |
-
"\n",
|
1326 |
-
"results"
|
1327 |
-
]
|
1328 |
-
}
|
1329 |
-
],
|
1330 |
-
"metadata": {
|
1331 |
-
"kernelspec": {
|
1332 |
-
"display_name": "base",
|
1333 |
-
"language": "python",
|
1334 |
-
"name": "python3"
|
1335 |
-
},
|
1336 |
-
"language_info": {
|
1337 |
-
"codemirror_mode": {
|
1338 |
-
"name": "ipython",
|
1339 |
-
"version": 3
|
1340 |
-
},
|
1341 |
-
"file_extension": ".py",
|
1342 |
-
"mimetype": "text/x-python",
|
1343 |
-
"name": "python",
|
1344 |
-
"nbconvert_exporter": "python",
|
1345 |
-
"pygments_lexer": "ipython3",
|
1346 |
-
"version": "3.12.7"
|
1347 |
-
}
|
1348 |
-
},
|
1349 |
-
"nbformat": 4,
|
1350 |
-
"nbformat_minor": 2
|
1351 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
notebooks/template-image.ipynb
DELETED
@@ -1,475 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"cells": [
|
3 |
-
{
|
4 |
-
"cell_type": "markdown",
|
5 |
-
"metadata": {},
|
6 |
-
"source": [
|
7 |
-
"# 🚧 Info\n",
|
8 |
-
"\n",
|
9 |
-
"https://huggingface.co/datasets/pyronear/pyro-sdis\n",
|
10 |
-
"\n",
|
11 |
-
"https://frugalaichallenge.org/participate/"
|
12 |
-
]
|
13 |
-
},
|
14 |
-
{
|
15 |
-
"cell_type": "markdown",
|
16 |
-
"metadata": {},
|
17 |
-
"source": [
|
18 |
-
"# Image task notebook template\n",
|
19 |
-
"## Loading the necessary libraries"
|
20 |
-
]
|
21 |
-
},
|
22 |
-
{
|
23 |
-
"cell_type": "code",
|
24 |
-
"execution_count": 1,
|
25 |
-
"metadata": {},
|
26 |
-
"outputs": [
|
27 |
-
{
|
28 |
-
"ename": "ModuleNotFoundError",
|
29 |
-
"evalue": "No module named 'tasks'",
|
30 |
-
"output_type": "error",
|
31 |
-
"traceback": [
|
32 |
-
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
|
33 |
-
"\u001b[0;31mModuleNotFoundError\u001b[0m Traceback (most recent call last)",
|
34 |
-
"Cell \u001b[0;32mIn[1], line 9\u001b[0m\n\u001b[1;32m 5\u001b[0m \u001b[38;5;28;01mimport\u001b[39;00m\u001b[38;5;250m \u001b[39m\u001b[38;5;21;01mrandom\u001b[39;00m\n\u001b[1;32m 6\u001b[0m \u001b[38;5;66;03m# import sys\u001b[39;00m\n\u001b[1;32m 7\u001b[0m \u001b[38;5;66;03m# sys.path.append('../')\u001b[39;00m\n\u001b[0;32m----> 9\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m\u001b[38;5;250m \u001b[39m\u001b[38;5;21;01mtasks\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mutils\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mevaluation\u001b[39;00m\u001b[38;5;250m \u001b[39m\u001b[38;5;28;01mimport\u001b[39;00m ImageEvaluationRequest\n\u001b[1;32m 10\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m\u001b[38;5;250m \u001b[39m\u001b[38;5;21;01mtasks\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mutils\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01memissions\u001b[39;00m\u001b[38;5;250m \u001b[39m\u001b[38;5;28;01mimport\u001b[39;00m tracker, clean_emissions_data, get_space_info\n\u001b[1;32m 11\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m\u001b[38;5;250m \u001b[39m\u001b[38;5;21;01mtasks\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mutils\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mload_data\u001b[39;00m\u001b[38;5;250m \u001b[39m\u001b[38;5;28;01mimport\u001b[39;00m load_data\n",
|
35 |
-
"\u001b[0;31mModuleNotFoundError\u001b[0m: No module named 'tasks'"
|
36 |
-
]
|
37 |
-
}
|
38 |
-
],
|
39 |
-
"source": [
|
40 |
-
"from fastapi import APIRouter\n",
|
41 |
-
"from datetime import datetime\n",
|
42 |
-
"from sklearn.metrics import accuracy_score, precision_score, recall_score\n",
|
43 |
-
"\n",
|
44 |
-
"import random\n",
|
45 |
-
"# import sys\n",
|
46 |
-
"# sys.path.append('../')\n",
|
47 |
-
"\n",
|
48 |
-
"from tasks.utils.evaluation import ImageEvaluationRequest\n",
|
49 |
-
"from tasks.utils.emissions import tracker, clean_emissions_data, get_space_info\n",
|
50 |
-
"from tasks.utils.load_data import load_data\n",
|
51 |
-
"from tasks.image import parse_boxes,compute_iou,compute_max_iou"
|
52 |
-
]
|
53 |
-
},
|
54 |
-
{
|
55 |
-
"cell_type": "markdown",
|
56 |
-
"metadata": {},
|
57 |
-
"source": [
|
58 |
-
"## Loading the datasets and splitting them"
|
59 |
-
]
|
60 |
-
},
|
61 |
-
{
|
62 |
-
"cell_type": "code",
|
63 |
-
"execution_count": 2,
|
64 |
-
"metadata": {},
|
65 |
-
"outputs": [],
|
66 |
-
"source": [
|
67 |
-
"request = ImageEvaluationRequest()\n",
|
68 |
-
"# Define paths\n",
|
69 |
-
"REPO_ID = request.dataset_name\n",
|
70 |
-
"OUTPUT_DIR = \"../pyro-sdis\""
|
71 |
-
]
|
72 |
-
},
|
73 |
-
{
|
74 |
-
"cell_type": "markdown",
|
75 |
-
"metadata": {},
|
76 |
-
"source": [
|
77 |
-
"## 🚧 Code JL"
|
78 |
-
]
|
79 |
-
},
|
80 |
-
{
|
81 |
-
"cell_type": "markdown",
|
82 |
-
"metadata": {},
|
83 |
-
"source": [
|
84 |
-
"**Export Dataset**: Use the following function to save the dataset in Ultralytics format:"
|
85 |
-
]
|
86 |
-
},
|
87 |
-
{
|
88 |
-
"cell_type": "code",
|
89 |
-
"execution_count": null,
|
90 |
-
"metadata": {},
|
91 |
-
"outputs": [],
|
92 |
-
"source": [
|
93 |
-
"# Load and prepare dataset\n",
|
94 |
-
"ds = load_data(REPO_ID, OUTPUT_DIR)"
|
95 |
-
]
|
96 |
-
},
|
97 |
-
{
|
98 |
-
"cell_type": "code",
|
99 |
-
"execution_count": null,
|
100 |
-
"metadata": {},
|
101 |
-
"outputs": [
|
102 |
-
{
|
103 |
-
"name": "stderr",
|
104 |
-
"output_type": "stream",
|
105 |
-
"text": [
|
106 |
-
"Generating train split: 100%|██████████| 29537/29537 [00:03<00:00, 7616.82 examples/s]\n",
|
107 |
-
"Generating val split: 100%|██████████| 4099/4099 [00:00<00:00, 10697.80 examples/s]\n"
|
108 |
-
]
|
109 |
-
}
|
110 |
-
],
|
111 |
-
"source": [
|
112 |
-
"# # Create the directory structure\n",
|
113 |
-
"# for split in [\"train\", \"val\"]:\n",
|
114 |
-
"# os.makedirs(os.path.join(IMAGE_DIR, split), exist_ok=True)\n",
|
115 |
-
"# os.makedirs(os.path.join(LABEL_DIR, split), exist_ok=True)\n",
|
116 |
-
"\n",
|
117 |
-
"# # Load the dataset from the Hugging Face Hub\n",
|
118 |
-
"# dataset = load_dataset(REPO_ID)\n",
|
119 |
-
"\n",
|
120 |
-
"# # Save in Ultralytics format\n",
|
121 |
-
"# def save_ultralytics_format(dataset_split, split):\n",
|
122 |
-
"# \"\"\"\n",
|
123 |
-
"# Save a dataset split into the Ultralytics format.\n",
|
124 |
-
"# Args:\n",
|
125 |
-
"# dataset_split: The dataset split (e.g., dataset[\"train\"])\n",
|
126 |
-
"# split: \"train\" or \"val\"\n",
|
127 |
-
"# \"\"\"\n",
|
128 |
-
"# for example in dataset_split:\n",
|
129 |
-
"# # Save the image to the appropriate folder\n",
|
130 |
-
"# image = example[\"image\"] # PIL.Image.Image\n",
|
131 |
-
"# image_name = example[\"image_name\"] # Original file name\n",
|
132 |
-
"# output_image_path = os.path.join(IMAGE_DIR, split, image_name)\n",
|
133 |
-
"\n",
|
134 |
-
"# # Save the image object to disk\n",
|
135 |
-
"# image.save(output_image_path)\n",
|
136 |
-
"\n",
|
137 |
-
"# # Save label\n",
|
138 |
-
"# annotations = example[\"annotations\"]\n",
|
139 |
-
"# label_name = image_name.replace(\".jpg\", \".txt\").replace(\".png\", \".txt\")\n",
|
140 |
-
"# output_label_path = os.path.join(LABEL_DIR, split, label_name)\n",
|
141 |
-
" \n",
|
142 |
-
"# with open(output_label_path, \"w\") as label_file:\n",
|
143 |
-
"# label_file.write(annotations)\n",
|
144 |
-
"\n",
|
145 |
-
"# # Save train and validation splits\n",
|
146 |
-
"# save_ultralytics_format(dataset[\"train\"], \"train\")\n",
|
147 |
-
"# save_ultralytics_format(dataset[\"val\"], \"val\")\n",
|
148 |
-
"\n",
|
149 |
-
"# print(\"Dataset exported to Ultralytics format.\")"
|
150 |
-
]
|
151 |
-
},
|
152 |
-
{
|
153 |
-
"cell_type": "markdown",
|
154 |
-
"metadata": {},
|
155 |
-
"source": [
|
156 |
-
"**Training** with Ultralytics YOLO"
|
157 |
-
]
|
158 |
-
},
|
159 |
-
{
|
160 |
-
"cell_type": "code",
|
161 |
-
"execution_count": null,
|
162 |
-
"metadata": {},
|
163 |
-
"outputs": [],
|
164 |
-
"source": [
|
165 |
-
"# from huggingface_hub import hf_hub_download\n",
|
166 |
-
"\n",
|
167 |
-
"# # Correctly set repo_id and repo_type\n",
|
168 |
-
"# repo_id = \"pyronear/pyro-sdis\"\n",
|
169 |
-
"# filename = \"data.yaml\"\n",
|
170 |
-
"\n",
|
171 |
-
"# # Download data.yaml to the current directory\n",
|
172 |
-
"# yaml_path = hf_hub_download(repo_id=repo_id, filename=filename, repo_type=\"dataset\", local_dir=\".\")\n",
|
173 |
-
"# print(f\"data.yaml downloaded to: {yaml_path}\")"
|
174 |
-
]
|
175 |
-
},
|
176 |
-
{
|
177 |
-
"cell_type": "markdown",
|
178 |
-
"metadata": {},
|
179 |
-
"source": [
|
180 |
-
"Train with Yolo (command line)"
|
181 |
-
]
|
182 |
-
},
|
183 |
-
{
|
184 |
-
"cell_type": "code",
|
185 |
-
"execution_count": null,
|
186 |
-
"metadata": {},
|
187 |
-
"outputs": [],
|
188 |
-
"source": [
|
189 |
-
"# yolo task=detect mode=train data=data.yaml model=yolov8n.pt epochs=50 imgsz=640 single_cls=True"
|
190 |
-
]
|
191 |
-
},
|
192 |
-
{
|
193 |
-
"cell_type": "markdown",
|
194 |
-
"metadata": {},
|
195 |
-
"source": [
|
196 |
-
"## 🚧 fin Code JL"
|
197 |
-
]
|
198 |
-
},
|
199 |
-
{
|
200 |
-
"cell_type": "code",
|
201 |
-
"execution_count": null,
|
202 |
-
"metadata": {},
|
203 |
-
"outputs": [],
|
204 |
-
"source": [
|
205 |
-
"# Split dataset\n",
|
206 |
-
"train_test = dataset[\"train\"].train_test_split(test_size=request.test_size, seed=request.test_seed)\n",
|
207 |
-
"test_dataset = train_test[\"test\"]"
|
208 |
-
]
|
209 |
-
},
|
210 |
-
{
|
211 |
-
"cell_type": "code",
|
212 |
-
"execution_count": 7,
|
213 |
-
"metadata": {},
|
214 |
-
"outputs": [
|
215 |
-
{
|
216 |
-
"data": {
|
217 |
-
"text/plain": [
|
218 |
-
"Dataset({\n",
|
219 |
-
" features: ['image', 'annotations', 'image_name', 'partner', 'camera', 'date'],\n",
|
220 |
-
" num_rows: 29537\n",
|
221 |
-
"})"
|
222 |
-
]
|
223 |
-
},
|
224 |
-
"execution_count": 7,
|
225 |
-
"metadata": {},
|
226 |
-
"output_type": "execute_result"
|
227 |
-
}
|
228 |
-
],
|
229 |
-
"source": [
|
230 |
-
"dataset[\"train\"]"
|
231 |
-
]
|
232 |
-
},
|
233 |
-
{
|
234 |
-
"cell_type": "code",
|
235 |
-
"execution_count": 14,
|
236 |
-
"metadata": {},
|
237 |
-
"outputs": [
|
238 |
-
{
|
239 |
-
"data": {
|
240 |
-
"text/plain": [
|
241 |
-
"datasets.dataset_dict.DatasetDict"
|
242 |
-
]
|
243 |
-
},
|
244 |
-
"execution_count": 14,
|
245 |
-
"metadata": {},
|
246 |
-
"output_type": "execute_result"
|
247 |
-
}
|
248 |
-
],
|
249 |
-
"source": [
|
250 |
-
"type(dataset)"
|
251 |
-
]
|
252 |
-
},
|
253 |
-
{
|
254 |
-
"cell_type": "markdown",
|
255 |
-
"metadata": {},
|
256 |
-
"source": [
|
257 |
-
"## Random Baseline"
|
258 |
-
]
|
259 |
-
},
|
260 |
-
{
|
261 |
-
"cell_type": "code",
|
262 |
-
"execution_count": 8,
|
263 |
-
"metadata": {},
|
264 |
-
"outputs": [
|
265 |
-
{
|
266 |
-
"name": "stderr",
|
267 |
-
"output_type": "stream",
|
268 |
-
"text": [
|
269 |
-
"[codecarbon WARNING @ 17:11:39] Already started tracking\n",
|
270 |
-
"[codecarbon INFO @ 17:11:39] A task is already under measure\n"
|
271 |
-
]
|
272 |
-
}
|
273 |
-
],
|
274 |
-
"source": [
|
275 |
-
"# Start tracking emissions\n",
|
276 |
-
"tracker.start()\n",
|
277 |
-
"tracker.start_task(\"inference\")"
|
278 |
-
]
|
279 |
-
},
|
280 |
-
{
|
281 |
-
"cell_type": "code",
|
282 |
-
"execution_count": 11,
|
283 |
-
"metadata": {},
|
284 |
-
"outputs": [],
|
285 |
-
"source": [
|
286 |
-
"\n",
|
287 |
-
"#--------------------------------------------------------------------------------------------\n",
|
288 |
-
"# YOUR MODEL INFERENCE CODE HERE\n",
|
289 |
-
"# Update the code below to replace the random baseline by your model inference within the inference pass where the energy consumption and emissions are tracked.\n",
|
290 |
-
"#--------------------------------------------------------------------------------------------\n",
|
291 |
-
"\n",
|
292 |
-
"# Make random predictions (placeholder for actual model inference)\n",
|
293 |
-
"\n",
|
294 |
-
"predictions = []\n",
|
295 |
-
"true_labels = []\n",
|
296 |
-
"pred_boxes = []\n",
|
297 |
-
"true_boxes_list = [] # List of lists, each inner list contains boxes for one image\n",
|
298 |
-
"\n",
|
299 |
-
"for example in test_dataset:\n",
|
300 |
-
" # Parse true annotation (YOLO format: class_id x_center y_center width height)\n",
|
301 |
-
" annotation = example.get(\"annotations\", \"\").strip()\n",
|
302 |
-
" has_smoke = len(annotation) > 0\n",
|
303 |
-
" true_labels.append(int(has_smoke))\n",
|
304 |
-
" \n",
|
305 |
-
" # Make random classification prediction\n",
|
306 |
-
" pred_has_smoke = random.random() > 0.5\n",
|
307 |
-
" predictions.append(int(pred_has_smoke))\n",
|
308 |
-
" \n",
|
309 |
-
" # If there's a true box, parse it and make random box prediction\n",
|
310 |
-
" if has_smoke:\n",
|
311 |
-
" # Parse all true boxes from the annotation\n",
|
312 |
-
" image_true_boxes = parse_boxes(annotation)\n",
|
313 |
-
" true_boxes_list.append(image_true_boxes)\n",
|
314 |
-
" \n",
|
315 |
-
" # For baseline, make one random box prediction per image\n",
|
316 |
-
" # In a real model, you might want to predict multiple boxes\n",
|
317 |
-
" random_box = [\n",
|
318 |
-
" random.random(), # x_center\n",
|
319 |
-
" random.random(), # y_center\n",
|
320 |
-
" random.random() * 0.5, # width (max 0.5)\n",
|
321 |
-
" random.random() * 0.5 # height (max 0.5)\n",
|
322 |
-
" ]\n",
|
323 |
-
" pred_boxes.append(random_box)\n",
|
324 |
-
"\n",
|
325 |
-
"\n",
|
326 |
-
"#--------------------------------------------------------------------------------------------\n",
|
327 |
-
"# YOUR MODEL INFERENCE STOPS HERE\n",
|
328 |
-
"#-------------------------------------------------------------------------------------------- "
|
329 |
-
]
|
330 |
-
},
|
331 |
-
{
|
332 |
-
"cell_type": "code",
|
333 |
-
"execution_count": 9,
|
334 |
-
"metadata": {},
|
335 |
-
"outputs": [
|
336 |
-
{
|
337 |
-
"name": "stderr",
|
338 |
-
"output_type": "stream",
|
339 |
-
"text": [
|
340 |
-
"[codecarbon WARNING @ 17:12:24] Background scheduler didn't run for a long period (1885s), results might be inaccurate\n",
|
341 |
-
"[codecarbon INFO @ 17:12:24] Energy consumed for RAM : 0.003142 kWh. RAM Power : 6.0 W\n",
|
342 |
-
"[codecarbon INFO @ 17:12:24] Energy consumed for all CPUs : 0.002618 kWh. Total CPU Power : 5.0 W\n",
|
343 |
-
"[codecarbon INFO @ 17:12:24] 0.005760 kWh of electricity used since the beginning.\n"
|
344 |
-
]
|
345 |
-
}
|
346 |
-
],
|
347 |
-
"source": [
|
348 |
-
"# Stop tracking emissions\n",
|
349 |
-
"emissions_data = tracker.stop_task()"
|
350 |
-
]
|
351 |
-
},
|
352 |
-
{
|
353 |
-
"cell_type": "code",
|
354 |
-
"execution_count": 12,
|
355 |
-
"metadata": {},
|
356 |
-
"outputs": [],
|
357 |
-
"source": [
|
358 |
-
"import numpy as np\n",
|
359 |
-
"\n",
|
360 |
-
"# Calculate classification metrics\n",
|
361 |
-
"classification_accuracy = accuracy_score(true_labels, predictions)\n",
|
362 |
-
"classification_precision = precision_score(true_labels, predictions)\n",
|
363 |
-
"classification_recall = recall_score(true_labels, predictions)\n",
|
364 |
-
"\n",
|
365 |
-
"# Calculate mean IoU for object detection (only for images with smoke)\n",
|
366 |
-
"# For each image, we compute the max IoU between the predicted box and all true boxes\n",
|
367 |
-
"ious = []\n",
|
368 |
-
"for true_boxes, pred_box in zip(true_boxes_list, pred_boxes):\n",
|
369 |
-
" max_iou = compute_max_iou(true_boxes, pred_box)\n",
|
370 |
-
" ious.append(max_iou)\n",
|
371 |
-
"\n",
|
372 |
-
"mean_iou = float(np.mean(ious)) if ious else 0.0"
|
373 |
-
]
|
374 |
-
},
|
375 |
-
{
|
376 |
-
"cell_type": "code",
|
377 |
-
"execution_count": 13,
|
378 |
-
"metadata": {},
|
379 |
-
"outputs": [
|
380 |
-
{
|
381 |
-
"data": {
|
382 |
-
"text/plain": [
|
383 |
-
"{'submission_timestamp': '2025-01-23T17:13:47.158903',\n",
|
384 |
-
" 'classification_accuracy': 0.4974610697359513,\n",
|
385 |
-
" 'classification_precision': 0.8362892223738063,\n",
|
386 |
-
" 'classification_recall': 0.49625581866019025,\n",
|
387 |
-
" 'mean_iou': 0.0026954029097350594,\n",
|
388 |
-
" 'energy_consumed_wh': 5.759879923426909,\n",
|
389 |
-
" 'emissions_gco2eq': 0.2006914961719638,\n",
|
390 |
-
" 'emissions_data': {'run_id': 'fbab9dd9-2893-4216-91c4-232be358d4dd',\n",
|
391 |
-
" 'duration': 1885.054949500016,\n",
|
392 |
-
" 'emissions': 0.0002006914961719638,\n",
|
393 |
-
" 'emissions_rate': 1.0646457428260931e-07,\n",
|
394 |
-
" 'cpu_power': 5.0,\n",
|
395 |
-
" 'gpu_power': 0.0,\n",
|
396 |
-
" 'ram_power': 6.0,\n",
|
397 |
-
" 'cpu_energy': 0.002618128800231918,\n",
|
398 |
-
" 'gpu_energy': 0,\n",
|
399 |
-
" 'ram_energy': 0.0031417511231949906,\n",
|
400 |
-
" 'energy_consumed': 0.005759879923426909,\n",
|
401 |
-
" 'country_name': 'Switzerland',\n",
|
402 |
-
" 'country_iso_code': 'CHE',\n",
|
403 |
-
" 'region': 'zurich',\n",
|
404 |
-
" 'cloud_provider': '',\n",
|
405 |
-
" 'cloud_region': '',\n",
|
406 |
-
" 'os': 'macOS-15.2-arm64-arm-64bit',\n",
|
407 |
-
" 'python_version': '3.12.7',\n",
|
408 |
-
" 'codecarbon_version': '2.8.3',\n",
|
409 |
-
" 'cpu_count': 8,\n",
|
410 |
-
" 'cpu_model': 'Apple M1',\n",
|
411 |
-
" 'gpu_count': None,\n",
|
412 |
-
" 'gpu_model': None,\n",
|
413 |
-
" 'ram_total_size': 16.0,\n",
|
414 |
-
" 'tracking_mode': 'machine',\n",
|
415 |
-
" 'on_cloud': 'N',\n",
|
416 |
-
" 'pue': 1.0},\n",
|
417 |
-
" 'dataset_config': {'dataset_name': 'pyronear/pyro-sdis',\n",
|
418 |
-
" 'test_size': 0.2,\n",
|
419 |
-
" 'test_seed': 42}}"
|
420 |
-
]
|
421 |
-
},
|
422 |
-
"execution_count": 13,
|
423 |
-
"metadata": {},
|
424 |
-
"output_type": "execute_result"
|
425 |
-
}
|
426 |
-
],
|
427 |
-
"source": [
|
428 |
-
"\n",
|
429 |
-
"# Prepare results dictionary\n",
|
430 |
-
"results = {\n",
|
431 |
-
" \"submission_timestamp\": datetime.now().isoformat(),\n",
|
432 |
-
" \"classification_accuracy\": float(classification_accuracy),\n",
|
433 |
-
" \"classification_precision\": float(classification_precision),\n",
|
434 |
-
" \"classification_recall\": float(classification_recall),\n",
|
435 |
-
" \"mean_iou\": mean_iou,\n",
|
436 |
-
" \"energy_consumed_wh\": emissions_data.energy_consumed * 1000,\n",
|
437 |
-
" \"emissions_gco2eq\": emissions_data.emissions * 1000,\n",
|
438 |
-
" \"emissions_data\": clean_emissions_data(emissions_data),\n",
|
439 |
-
" \"dataset_config\": {\n",
|
440 |
-
" \"dataset_name\": request.dataset_name,\n",
|
441 |
-
" \"test_size\": request.test_size,\n",
|
442 |
-
" \"test_seed\": request.test_seed\n",
|
443 |
-
" }\n",
|
444 |
-
"}\n",
|
445 |
-
"results"
|
446 |
-
]
|
447 |
-
},
|
448 |
-
{
|
449 |
-
"cell_type": "markdown",
|
450 |
-
"metadata": {},
|
451 |
-
"source": []
|
452 |
-
}
|
453 |
-
],
|
454 |
-
"metadata": {
|
455 |
-
"kernelspec": {
|
456 |
-
"display_name": ".venv",
|
457 |
-
"language": "python",
|
458 |
-
"name": "python3"
|
459 |
-
},
|
460 |
-
"language_info": {
|
461 |
-
"codemirror_mode": {
|
462 |
-
"name": "ipython",
|
463 |
-
"version": 3
|
464 |
-
},
|
465 |
-
"file_extension": ".py",
|
466 |
-
"mimetype": "text/x-python",
|
467 |
-
"name": "python",
|
468 |
-
"nbconvert_exporter": "python",
|
469 |
-
"pygments_lexer": "ipython3",
|
470 |
-
"version": "3.12.7"
|
471 |
-
}
|
472 |
-
},
|
473 |
-
"nbformat": 4,
|
474 |
-
"nbformat_minor": 2
|
475 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
notebooks/template-text.ipynb
DELETED
@@ -1,1642 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"cells": [
|
3 |
-
{
|
4 |
-
"cell_type": "markdown",
|
5 |
-
"metadata": {},
|
6 |
-
"source": [
|
7 |
-
"# Text task notebook template\n",
|
8 |
-
"## Loading the necessary libraries"
|
9 |
-
]
|
10 |
-
},
|
11 |
-
{
|
12 |
-
"cell_type": "code",
|
13 |
-
"execution_count": 3,
|
14 |
-
"metadata": {},
|
15 |
-
"outputs": [
|
16 |
-
{
|
17 |
-
"name": "stderr",
|
18 |
-
"output_type": "stream",
|
19 |
-
"text": [
|
20 |
-
"[codecarbon WARNING @ 19:48:07] Multiple instances of codecarbon are allowed to run at the same time.\n",
|
21 |
-
"[codecarbon INFO @ 19:48:07] [setup] RAM Tracking...\n",
|
22 |
-
"[codecarbon INFO @ 19:48:07] [setup] CPU Tracking...\n",
|
23 |
-
"[codecarbon WARNING @ 19:48:09] We saw that you have a 13th Gen Intel(R) Core(TM) i7-1365U but we don't know it. Please contact us.\n",
|
24 |
-
"[codecarbon WARNING @ 19:48:09] No CPU tracking mode found. Falling back on CPU constant mode. \n",
|
25 |
-
" Windows OS detected: Please install Intel Power Gadget to measure CPU\n",
|
26 |
-
"\n",
|
27 |
-
"[codecarbon WARNING @ 19:48:11] We saw that you have a 13th Gen Intel(R) Core(TM) i7-1365U but we don't know it. Please contact us.\n",
|
28 |
-
"[codecarbon INFO @ 19:48:11] CPU Model on constant consumption mode: 13th Gen Intel(R) Core(TM) i7-1365U\n",
|
29 |
-
"[codecarbon WARNING @ 19:48:11] No CPU tracking mode found. Falling back on CPU constant mode.\n",
|
30 |
-
"[codecarbon INFO @ 19:48:11] [setup] GPU Tracking...\n",
|
31 |
-
"[codecarbon INFO @ 19:48:11] No GPU found.\n",
|
32 |
-
"[codecarbon INFO @ 19:48:11] >>> Tracker's metadata:\n",
|
33 |
-
"[codecarbon INFO @ 19:48:11] Platform system: Windows-11-10.0.22631-SP0\n",
|
34 |
-
"[codecarbon INFO @ 19:48:11] Python version: 3.12.7\n",
|
35 |
-
"[codecarbon INFO @ 19:48:11] CodeCarbon version: 3.0.0_rc0\n",
|
36 |
-
"[codecarbon INFO @ 19:48:11] Available RAM : 31.347 GB\n",
|
37 |
-
"[codecarbon INFO @ 19:48:11] CPU count: 12\n",
|
38 |
-
"[codecarbon INFO @ 19:48:11] CPU model: 13th Gen Intel(R) Core(TM) i7-1365U\n",
|
39 |
-
"[codecarbon INFO @ 19:48:11] GPU count: None\n",
|
40 |
-
"[codecarbon INFO @ 19:48:11] GPU model: None\n",
|
41 |
-
"[codecarbon INFO @ 19:48:11] Saving emissions data to file c:\\git\\submission-template\\notebooks\\emissions.csv\n"
|
42 |
-
]
|
43 |
-
}
|
44 |
-
],
|
45 |
-
"source": [
|
46 |
-
"from fastapi import APIRouter\n",
|
47 |
-
"from datetime import datetime\n",
|
48 |
-
"from datasets import load_dataset\n",
|
49 |
-
"from sklearn.metrics import accuracy_score\n",
|
50 |
-
"import random\n",
|
51 |
-
"\n",
|
52 |
-
"import sys\n",
|
53 |
-
"sys.path.append('../tasks')\n",
|
54 |
-
"\n",
|
55 |
-
"from utils.evaluation import TextEvaluationRequest\n",
|
56 |
-
"from utils.emissions import tracker, clean_emissions_data, get_space_info\n",
|
57 |
-
"\n",
|
58 |
-
"\n",
|
59 |
-
"# Define the label mapping\n",
|
60 |
-
"LABEL_MAPPING = {\n",
|
61 |
-
" \"0_not_relevant\": 0,\n",
|
62 |
-
" \"1_not_happening\": 1,\n",
|
63 |
-
" \"2_not_human\": 2,\n",
|
64 |
-
" \"3_not_bad\": 3,\n",
|
65 |
-
" \"4_solutions_harmful_unnecessary\": 4,\n",
|
66 |
-
" \"5_science_unreliable\": 5,\n",
|
67 |
-
" \"6_proponents_biased\": 6,\n",
|
68 |
-
" \"7_fossil_fuels_needed\": 7\n",
|
69 |
-
"}"
|
70 |
-
]
|
71 |
-
},
|
72 |
-
{
|
73 |
-
"cell_type": "markdown",
|
74 |
-
"metadata": {},
|
75 |
-
"source": [
|
76 |
-
"## Loading the datasets and splitting them"
|
77 |
-
]
|
78 |
-
},
|
79 |
-
{
|
80 |
-
"cell_type": "code",
|
81 |
-
"execution_count": 4,
|
82 |
-
"metadata": {},
|
83 |
-
"outputs": [
|
84 |
-
{
|
85 |
-
"data": {
|
86 |
-
"application/vnd.jupyter.widget-view+json": {
|
87 |
-
"model_id": "668da7bf85434e098b95c3ec447d78fe",
|
88 |
-
"version_major": 2,
|
89 |
-
"version_minor": 0
|
90 |
-
},
|
91 |
-
"text/plain": [
|
92 |
-
"README.md: 0%| | 0.00/5.18k [00:00<?, ?B/s]"
|
93 |
-
]
|
94 |
-
},
|
95 |
-
"metadata": {},
|
96 |
-
"output_type": "display_data"
|
97 |
-
},
|
98 |
-
{
|
99 |
-
"name": "stderr",
|
100 |
-
"output_type": "stream",
|
101 |
-
"text": [
|
102 |
-
"c:\\Users\\theo.alvesdacosta\\AppData\\Local\\anaconda3\\Lib\\site-packages\\huggingface_hub\\file_download.py:139: UserWarning: `huggingface_hub` cache-system uses symlinks by default to efficiently store duplicated files but your machine does not support them in C:\\Users\\theo.alvesdacosta\\.cache\\huggingface\\hub\\datasets--QuotaClimat--frugalaichallenge-text-train. Caching files will still work but in a degraded version that might require more space on your disk. This warning can be disabled by setting the `HF_HUB_DISABLE_SYMLINKS_WARNING` environment variable. For more details, see https://huggingface.co/docs/huggingface_hub/how-to-cache#limitations.\n",
|
103 |
-
"To support symlinks on Windows, you either need to activate Developer Mode or to run Python as an administrator. In order to activate developer mode, see this article: https://docs.microsoft.com/en-us/windows/apps/get-started/enable-your-device-for-development\n",
|
104 |
-
" warnings.warn(message)\n"
|
105 |
-
]
|
106 |
-
},
|
107 |
-
{
|
108 |
-
"data": {
|
109 |
-
"application/vnd.jupyter.widget-view+json": {
|
110 |
-
"model_id": "5b68d43359eb429395da8be7d4b15556",
|
111 |
-
"version_major": 2,
|
112 |
-
"version_minor": 0
|
113 |
-
},
|
114 |
-
"text/plain": [
|
115 |
-
"train.parquet: 0%| | 0.00/1.21M [00:00<?, ?B/s]"
|
116 |
-
]
|
117 |
-
},
|
118 |
-
"metadata": {},
|
119 |
-
"output_type": "display_data"
|
120 |
-
},
|
121 |
-
{
|
122 |
-
"data": {
|
123 |
-
"application/vnd.jupyter.widget-view+json": {
|
124 |
-
"model_id": "140a304773914e9db8f698eabeb40298",
|
125 |
-
"version_major": 2,
|
126 |
-
"version_minor": 0
|
127 |
-
},
|
128 |
-
"text/plain": [
|
129 |
-
"Generating train split: 0%| | 0/6091 [00:00<?, ? examples/s]"
|
130 |
-
]
|
131 |
-
},
|
132 |
-
"metadata": {},
|
133 |
-
"output_type": "display_data"
|
134 |
-
},
|
135 |
-
{
|
136 |
-
"data": {
|
137 |
-
"application/vnd.jupyter.widget-view+json": {
|
138 |
-
"model_id": "6d04e8ab1906400e8e0029949dc523a5",
|
139 |
-
"version_major": 2,
|
140 |
-
"version_minor": 0
|
141 |
-
},
|
142 |
-
"text/plain": [
|
143 |
-
"Map: 0%| | 0/6091 [00:00<?, ? examples/s]"
|
144 |
-
]
|
145 |
-
},
|
146 |
-
"metadata": {},
|
147 |
-
"output_type": "display_data"
|
148 |
-
}
|
149 |
-
],
|
150 |
-
"source": [
|
151 |
-
"request = TextEvaluationRequest()\n",
|
152 |
-
"\n",
|
153 |
-
"# Load and prepare the dataset\n",
|
154 |
-
"dataset = load_dataset(request.dataset_name)\n",
|
155 |
-
"\n",
|
156 |
-
"# Convert string labels to integers\n",
|
157 |
-
"dataset = dataset.map(lambda x: {\"label\": LABEL_MAPPING[x[\"label\"]]})\n",
|
158 |
-
"\n",
|
159 |
-
"# Split dataset\n",
|
160 |
-
"train_test = dataset[\"train\"].train_test_split(test_size=request.test_size, seed=request.test_seed)\n",
|
161 |
-
"test_dataset = train_test[\"test\"]"
|
162 |
-
]
|
163 |
-
},
|
164 |
-
{
|
165 |
-
"cell_type": "markdown",
|
166 |
-
"metadata": {},
|
167 |
-
"source": [
|
168 |
-
"## Random Baseline"
|
169 |
-
]
|
170 |
-
},
|
171 |
-
{
|
172 |
-
"cell_type": "code",
|
173 |
-
"execution_count": 5,
|
174 |
-
"metadata": {},
|
175 |
-
"outputs": [],
|
176 |
-
"source": [
|
177 |
-
"# Start tracking emissions\n",
|
178 |
-
"tracker.start()\n",
|
179 |
-
"tracker.start_task(\"inference\")"
|
180 |
-
]
|
181 |
-
},
|
182 |
-
{
|
183 |
-
"cell_type": "code",
|
184 |
-
"execution_count": 6,
|
185 |
-
"metadata": {},
|
186 |
-
"outputs": [
|
187 |
-
{
|
188 |
-
"data": {
|
189 |
-
"text/plain": [
|
190 |
-
"[1,\n",
|
191 |
-
" 7,\n",
|
192 |
-
" 6,\n",
|
193 |
-
" 6,\n",
|
194 |
-
" 2,\n",
|
195 |
-
" 0,\n",
|
196 |
-
" 1,\n",
|
197 |
-
" 7,\n",
|
198 |
-
" 3,\n",
|
199 |
-
" 6,\n",
|
200 |
-
" 6,\n",
|
201 |
-
" 3,\n",
|
202 |
-
" 6,\n",
|
203 |
-
" 6,\n",
|
204 |
-
" 5,\n",
|
205 |
-
" 0,\n",
|
206 |
-
" 2,\n",
|
207 |
-
" 6,\n",
|
208 |
-
" 2,\n",
|
209 |
-
" 6,\n",
|
210 |
-
" 5,\n",
|
211 |
-
" 4,\n",
|
212 |
-
" 1,\n",
|
213 |
-
" 3,\n",
|
214 |
-
" 6,\n",
|
215 |
-
" 4,\n",
|
216 |
-
" 2,\n",
|
217 |
-
" 1,\n",
|
218 |
-
" 4,\n",
|
219 |
-
" 0,\n",
|
220 |
-
" 3,\n",
|
221 |
-
" 4,\n",
|
222 |
-
" 1,\n",
|
223 |
-
" 5,\n",
|
224 |
-
" 5,\n",
|
225 |
-
" 1,\n",
|
226 |
-
" 2,\n",
|
227 |
-
" 7,\n",
|
228 |
-
" 6,\n",
|
229 |
-
" 1,\n",
|
230 |
-
" 3,\n",
|
231 |
-
" 1,\n",
|
232 |
-
" 7,\n",
|
233 |
-
" 7,\n",
|
234 |
-
" 0,\n",
|
235 |
-
" 0,\n",
|
236 |
-
" 3,\n",
|
237 |
-
" 3,\n",
|
238 |
-
" 3,\n",
|
239 |
-
" 4,\n",
|
240 |
-
" 1,\n",
|
241 |
-
" 4,\n",
|
242 |
-
" 4,\n",
|
243 |
-
" 1,\n",
|
244 |
-
" 4,\n",
|
245 |
-
" 5,\n",
|
246 |
-
" 6,\n",
|
247 |
-
" 1,\n",
|
248 |
-
" 2,\n",
|
249 |
-
" 2,\n",
|
250 |
-
" 2,\n",
|
251 |
-
" 5,\n",
|
252 |
-
" 2,\n",
|
253 |
-
" 7,\n",
|
254 |
-
" 2,\n",
|
255 |
-
" 7,\n",
|
256 |
-
" 7,\n",
|
257 |
-
" 6,\n",
|
258 |
-
" 4,\n",
|
259 |
-
" 2,\n",
|
260 |
-
" 0,\n",
|
261 |
-
" 1,\n",
|
262 |
-
" 6,\n",
|
263 |
-
" 3,\n",
|
264 |
-
" 2,\n",
|
265 |
-
" 5,\n",
|
266 |
-
" 5,\n",
|
267 |
-
" 2,\n",
|
268 |
-
" 0,\n",
|
269 |
-
" 7,\n",
|
270 |
-
" 0,\n",
|
271 |
-
" 1,\n",
|
272 |
-
" 5,\n",
|
273 |
-
" 5,\n",
|
274 |
-
" 7,\n",
|
275 |
-
" 4,\n",
|
276 |
-
" 6,\n",
|
277 |
-
" 7,\n",
|
278 |
-
" 1,\n",
|
279 |
-
" 7,\n",
|
280 |
-
" 1,\n",
|
281 |
-
" 0,\n",
|
282 |
-
" 3,\n",
|
283 |
-
" 4,\n",
|
284 |
-
" 2,\n",
|
285 |
-
" 5,\n",
|
286 |
-
" 3,\n",
|
287 |
-
" 3,\n",
|
288 |
-
" 3,\n",
|
289 |
-
" 2,\n",
|
290 |
-
" 2,\n",
|
291 |
-
" 1,\n",
|
292 |
-
" 0,\n",
|
293 |
-
" 4,\n",
|
294 |
-
" 5,\n",
|
295 |
-
" 7,\n",
|
296 |
-
" 0,\n",
|
297 |
-
" 3,\n",
|
298 |
-
" 1,\n",
|
299 |
-
" 4,\n",
|
300 |
-
" 6,\n",
|
301 |
-
" 0,\n",
|
302 |
-
" 7,\n",
|
303 |
-
" 1,\n",
|
304 |
-
" 1,\n",
|
305 |
-
" 2,\n",
|
306 |
-
" 2,\n",
|
307 |
-
" 4,\n",
|
308 |
-
" 0,\n",
|
309 |
-
" 4,\n",
|
310 |
-
" 3,\n",
|
311 |
-
" 4,\n",
|
312 |
-
" 4,\n",
|
313 |
-
" 2,\n",
|
314 |
-
" 2,\n",
|
315 |
-
" 3,\n",
|
316 |
-
" 3,\n",
|
317 |
-
" 7,\n",
|
318 |
-
" 4,\n",
|
319 |
-
" 7,\n",
|
320 |
-
" 6,\n",
|
321 |
-
" 4,\n",
|
322 |
-
" 5,\n",
|
323 |
-
" 4,\n",
|
324 |
-
" 3,\n",
|
325 |
-
" 6,\n",
|
326 |
-
" 0,\n",
|
327 |
-
" 4,\n",
|
328 |
-
" 0,\n",
|
329 |
-
" 1,\n",
|
330 |
-
" 3,\n",
|
331 |
-
" 6,\n",
|
332 |
-
" 7,\n",
|
333 |
-
" 3,\n",
|
334 |
-
" 3,\n",
|
335 |
-
" 0,\n",
|
336 |
-
" 1,\n",
|
337 |
-
" 2,\n",
|
338 |
-
" 4,\n",
|
339 |
-
" 4,\n",
|
340 |
-
" 3,\n",
|
341 |
-
" 1,\n",
|
342 |
-
" 2,\n",
|
343 |
-
" 4,\n",
|
344 |
-
" 3,\n",
|
345 |
-
" 0,\n",
|
346 |
-
" 5,\n",
|
347 |
-
" 3,\n",
|
348 |
-
" 6,\n",
|
349 |
-
" 3,\n",
|
350 |
-
" 6,\n",
|
351 |
-
" 1,\n",
|
352 |
-
" 3,\n",
|
353 |
-
" 4,\n",
|
354 |
-
" 5,\n",
|
355 |
-
" 4,\n",
|
356 |
-
" 0,\n",
|
357 |
-
" 7,\n",
|
358 |
-
" 3,\n",
|
359 |
-
" 6,\n",
|
360 |
-
" 7,\n",
|
361 |
-
" 4,\n",
|
362 |
-
" 4,\n",
|
363 |
-
" 5,\n",
|
364 |
-
" 3,\n",
|
365 |
-
" 1,\n",
|
366 |
-
" 7,\n",
|
367 |
-
" 4,\n",
|
368 |
-
" 1,\n",
|
369 |
-
" 0,\n",
|
370 |
-
" 3,\n",
|
371 |
-
" 0,\n",
|
372 |
-
" 5,\n",
|
373 |
-
" 3,\n",
|
374 |
-
" 6,\n",
|
375 |
-
" 3,\n",
|
376 |
-
" 0,\n",
|
377 |
-
" 7,\n",
|
378 |
-
" 2,\n",
|
379 |
-
" 0,\n",
|
380 |
-
" 4,\n",
|
381 |
-
" 1,\n",
|
382 |
-
" 2,\n",
|
383 |
-
" 6,\n",
|
384 |
-
" 3,\n",
|
385 |
-
" 4,\n",
|
386 |
-
" 4,\n",
|
387 |
-
" 5,\n",
|
388 |
-
" 1,\n",
|
389 |
-
" 5,\n",
|
390 |
-
" 4,\n",
|
391 |
-
" 0,\n",
|
392 |
-
" 1,\n",
|
393 |
-
" 7,\n",
|
394 |
-
" 3,\n",
|
395 |
-
" 6,\n",
|
396 |
-
" 0,\n",
|
397 |
-
" 7,\n",
|
398 |
-
" 4,\n",
|
399 |
-
" 6,\n",
|
400 |
-
" 3,\n",
|
401 |
-
" 0,\n",
|
402 |
-
" 0,\n",
|
403 |
-
" 4,\n",
|
404 |
-
" 6,\n",
|
405 |
-
" 6,\n",
|
406 |
-
" 4,\n",
|
407 |
-
" 0,\n",
|
408 |
-
" 5,\n",
|
409 |
-
" 7,\n",
|
410 |
-
" 5,\n",
|
411 |
-
" 1,\n",
|
412 |
-
" 3,\n",
|
413 |
-
" 6,\n",
|
414 |
-
" 2,\n",
|
415 |
-
" 3,\n",
|
416 |
-
" 2,\n",
|
417 |
-
" 4,\n",
|
418 |
-
" 5,\n",
|
419 |
-
" 1,\n",
|
420 |
-
" 5,\n",
|
421 |
-
" 0,\n",
|
422 |
-
" 3,\n",
|
423 |
-
" 3,\n",
|
424 |
-
" 0,\n",
|
425 |
-
" 0,\n",
|
426 |
-
" 6,\n",
|
427 |
-
" 6,\n",
|
428 |
-
" 2,\n",
|
429 |
-
" 0,\n",
|
430 |
-
" 7,\n",
|
431 |
-
" 4,\n",
|
432 |
-
" 5,\n",
|
433 |
-
" 7,\n",
|
434 |
-
" 1,\n",
|
435 |
-
" 0,\n",
|
436 |
-
" 4,\n",
|
437 |
-
" 5,\n",
|
438 |
-
" 1,\n",
|
439 |
-
" 7,\n",
|
440 |
-
" 0,\n",
|
441 |
-
" 7,\n",
|
442 |
-
" 2,\n",
|
443 |
-
" 6,\n",
|
444 |
-
" 1,\n",
|
445 |
-
" 3,\n",
|
446 |
-
" 5,\n",
|
447 |
-
" 5,\n",
|
448 |
-
" 6,\n",
|
449 |
-
" 5,\n",
|
450 |
-
" 4,\n",
|
451 |
-
" 3,\n",
|
452 |
-
" 7,\n",
|
453 |
-
" 4,\n",
|
454 |
-
" 3,\n",
|
455 |
-
" 5,\n",
|
456 |
-
" 5,\n",
|
457 |
-
" 7,\n",
|
458 |
-
" 2,\n",
|
459 |
-
" 6,\n",
|
460 |
-
" 1,\n",
|
461 |
-
" 5,\n",
|
462 |
-
" 0,\n",
|
463 |
-
" 3,\n",
|
464 |
-
" 4,\n",
|
465 |
-
" 2,\n",
|
466 |
-
" 3,\n",
|
467 |
-
" 7,\n",
|
468 |
-
" 0,\n",
|
469 |
-
" 1,\n",
|
470 |
-
" 7,\n",
|
471 |
-
" 6,\n",
|
472 |
-
" 7,\n",
|
473 |
-
" 7,\n",
|
474 |
-
" 5,\n",
|
475 |
-
" 6,\n",
|
476 |
-
" 3,\n",
|
477 |
-
" 2,\n",
|
478 |
-
" 3,\n",
|
479 |
-
" 0,\n",
|
480 |
-
" 4,\n",
|
481 |
-
" 3,\n",
|
482 |
-
" 5,\n",
|
483 |
-
" 6,\n",
|
484 |
-
" 0,\n",
|
485 |
-
" 0,\n",
|
486 |
-
" 6,\n",
|
487 |
-
" 6,\n",
|
488 |
-
" 1,\n",
|
489 |
-
" 4,\n",
|
490 |
-
" 0,\n",
|
491 |
-
" 4,\n",
|
492 |
-
" 2,\n",
|
493 |
-
" 7,\n",
|
494 |
-
" 5,\n",
|
495 |
-
" 7,\n",
|
496 |
-
" 6,\n",
|
497 |
-
" 3,\n",
|
498 |
-
" 5,\n",
|
499 |
-
" 6,\n",
|
500 |
-
" 0,\n",
|
501 |
-
" 4,\n",
|
502 |
-
" 5,\n",
|
503 |
-
" 6,\n",
|
504 |
-
" 1,\n",
|
505 |
-
" 2,\n",
|
506 |
-
" 1,\n",
|
507 |
-
" 5,\n",
|
508 |
-
" 3,\n",
|
509 |
-
" 0,\n",
|
510 |
-
" 3,\n",
|
511 |
-
" 7,\n",
|
512 |
-
" 1,\n",
|
513 |
-
" 0,\n",
|
514 |
-
" 7,\n",
|
515 |
-
" 0,\n",
|
516 |
-
" 1,\n",
|
517 |
-
" 0,\n",
|
518 |
-
" 4,\n",
|
519 |
-
" 1,\n",
|
520 |
-
" 1,\n",
|
521 |
-
" 0,\n",
|
522 |
-
" 7,\n",
|
523 |
-
" 1,\n",
|
524 |
-
" 0,\n",
|
525 |
-
" 7,\n",
|
526 |
-
" 6,\n",
|
527 |
-
" 2,\n",
|
528 |
-
" 3,\n",
|
529 |
-
" 7,\n",
|
530 |
-
" 4,\n",
|
531 |
-
" 3,\n",
|
532 |
-
" 4,\n",
|
533 |
-
" 3,\n",
|
534 |
-
" 3,\n",
|
535 |
-
" 2,\n",
|
536 |
-
" 5,\n",
|
537 |
-
" 1,\n",
|
538 |
-
" 5,\n",
|
539 |
-
" 1,\n",
|
540 |
-
" 7,\n",
|
541 |
-
" 3,\n",
|
542 |
-
" 2,\n",
|
543 |
-
" 6,\n",
|
544 |
-
" 4,\n",
|
545 |
-
" 4,\n",
|
546 |
-
" 1,\n",
|
547 |
-
" 2,\n",
|
548 |
-
" 6,\n",
|
549 |
-
" 7,\n",
|
550 |
-
" 2,\n",
|
551 |
-
" 7,\n",
|
552 |
-
" 1,\n",
|
553 |
-
" 3,\n",
|
554 |
-
" 5,\n",
|
555 |
-
" 2,\n",
|
556 |
-
" 6,\n",
|
557 |
-
" 4,\n",
|
558 |
-
" 6,\n",
|
559 |
-
" 7,\n",
|
560 |
-
" 0,\n",
|
561 |
-
" 5,\n",
|
562 |
-
" 1,\n",
|
563 |
-
" 6,\n",
|
564 |
-
" 5,\n",
|
565 |
-
" 3,\n",
|
566 |
-
" 6,\n",
|
567 |
-
" 5,\n",
|
568 |
-
" 4,\n",
|
569 |
-
" 7,\n",
|
570 |
-
" 6,\n",
|
571 |
-
" 5,\n",
|
572 |
-
" 4,\n",
|
573 |
-
" 3,\n",
|
574 |
-
" 0,\n",
|
575 |
-
" 0,\n",
|
576 |
-
" 1,\n",
|
577 |
-
" 7,\n",
|
578 |
-
" 7,\n",
|
579 |
-
" 6,\n",
|
580 |
-
" 1,\n",
|
581 |
-
" 4,\n",
|
582 |
-
" 5,\n",
|
583 |
-
" 6,\n",
|
584 |
-
" 1,\n",
|
585 |
-
" 5,\n",
|
586 |
-
" 1,\n",
|
587 |
-
" 2,\n",
|
588 |
-
" 6,\n",
|
589 |
-
" 2,\n",
|
590 |
-
" 6,\n",
|
591 |
-
" 0,\n",
|
592 |
-
" 2,\n",
|
593 |
-
" 1,\n",
|
594 |
-
" 5,\n",
|
595 |
-
" 5,\n",
|
596 |
-
" 1,\n",
|
597 |
-
" 7,\n",
|
598 |
-
" 0,\n",
|
599 |
-
" 5,\n",
|
600 |
-
" 5,\n",
|
601 |
-
" 1,\n",
|
602 |
-
" 7,\n",
|
603 |
-
" 7,\n",
|
604 |
-
" 2,\n",
|
605 |
-
" 1,\n",
|
606 |
-
" 0,\n",
|
607 |
-
" 1,\n",
|
608 |
-
" 0,\n",
|
609 |
-
" 5,\n",
|
610 |
-
" 4,\n",
|
611 |
-
" 2,\n",
|
612 |
-
" 7,\n",
|
613 |
-
" 4,\n",
|
614 |
-
" 3,\n",
|
615 |
-
" 6,\n",
|
616 |
-
" 7,\n",
|
617 |
-
" 5,\n",
|
618 |
-
" 1,\n",
|
619 |
-
" 0,\n",
|
620 |
-
" 7,\n",
|
621 |
-
" 2,\n",
|
622 |
-
" 1,\n",
|
623 |
-
" 2,\n",
|
624 |
-
" 3,\n",
|
625 |
-
" 1,\n",
|
626 |
-
" 0,\n",
|
627 |
-
" 3,\n",
|
628 |
-
" 2,\n",
|
629 |
-
" 6,\n",
|
630 |
-
" 0,\n",
|
631 |
-
" 5,\n",
|
632 |
-
" 4,\n",
|
633 |
-
" 7,\n",
|
634 |
-
" 1,\n",
|
635 |
-
" 1,\n",
|
636 |
-
" 0,\n",
|
637 |
-
" 7,\n",
|
638 |
-
" 0,\n",
|
639 |
-
" 6,\n",
|
640 |
-
" 7,\n",
|
641 |
-
" 6,\n",
|
642 |
-
" 1,\n",
|
643 |
-
" 5,\n",
|
644 |
-
" 5,\n",
|
645 |
-
" 7,\n",
|
646 |
-
" 6,\n",
|
647 |
-
" 1,\n",
|
648 |
-
" 7,\n",
|
649 |
-
" 6,\n",
|
650 |
-
" 5,\n",
|
651 |
-
" 4,\n",
|
652 |
-
" 1,\n",
|
653 |
-
" 4,\n",
|
654 |
-
" 7,\n",
|
655 |
-
" 5,\n",
|
656 |
-
" 4,\n",
|
657 |
-
" 0,\n",
|
658 |
-
" 0,\n",
|
659 |
-
" 7,\n",
|
660 |
-
" 0,\n",
|
661 |
-
" 0,\n",
|
662 |
-
" 3,\n",
|
663 |
-
" 6,\n",
|
664 |
-
" 2,\n",
|
665 |
-
" 5,\n",
|
666 |
-
" 3,\n",
|
667 |
-
" 0,\n",
|
668 |
-
" 3,\n",
|
669 |
-
" 6,\n",
|
670 |
-
" 5,\n",
|
671 |
-
" 7,\n",
|
672 |
-
" 2,\n",
|
673 |
-
" 6,\n",
|
674 |
-
" 7,\n",
|
675 |
-
" 5,\n",
|
676 |
-
" 2,\n",
|
677 |
-
" 3,\n",
|
678 |
-
" 6,\n",
|
679 |
-
" 7,\n",
|
680 |
-
" 7,\n",
|
681 |
-
" 7,\n",
|
682 |
-
" 6,\n",
|
683 |
-
" 1,\n",
|
684 |
-
" 7,\n",
|
685 |
-
" 4,\n",
|
686 |
-
" 2,\n",
|
687 |
-
" 7,\n",
|
688 |
-
" 5,\n",
|
689 |
-
" 4,\n",
|
690 |
-
" 1,\n",
|
691 |
-
" 2,\n",
|
692 |
-
" 3,\n",
|
693 |
-
" 7,\n",
|
694 |
-
" 0,\n",
|
695 |
-
" 2,\n",
|
696 |
-
" 7,\n",
|
697 |
-
" 6,\n",
|
698 |
-
" 1,\n",
|
699 |
-
" 4,\n",
|
700 |
-
" 0,\n",
|
701 |
-
" 6,\n",
|
702 |
-
" 3,\n",
|
703 |
-
" 1,\n",
|
704 |
-
" 0,\n",
|
705 |
-
" 3,\n",
|
706 |
-
" 4,\n",
|
707 |
-
" 7,\n",
|
708 |
-
" 7,\n",
|
709 |
-
" 4,\n",
|
710 |
-
" 2,\n",
|
711 |
-
" 1,\n",
|
712 |
-
" 0,\n",
|
713 |
-
" 5,\n",
|
714 |
-
" 1,\n",
|
715 |
-
" 7,\n",
|
716 |
-
" 4,\n",
|
717 |
-
" 6,\n",
|
718 |
-
" 7,\n",
|
719 |
-
" 7,\n",
|
720 |
-
" 3,\n",
|
721 |
-
" 4,\n",
|
722 |
-
" 3,\n",
|
723 |
-
" 5,\n",
|
724 |
-
" 4,\n",
|
725 |
-
" 4,\n",
|
726 |
-
" 5,\n",
|
727 |
-
" 0,\n",
|
728 |
-
" 1,\n",
|
729 |
-
" 3,\n",
|
730 |
-
" 7,\n",
|
731 |
-
" 5,\n",
|
732 |
-
" 4,\n",
|
733 |
-
" 7,\n",
|
734 |
-
" 3,\n",
|
735 |
-
" 3,\n",
|
736 |
-
" 3,\n",
|
737 |
-
" 5,\n",
|
738 |
-
" 3,\n",
|
739 |
-
" 3,\n",
|
740 |
-
" 4,\n",
|
741 |
-
" 0,\n",
|
742 |
-
" 1,\n",
|
743 |
-
" 7,\n",
|
744 |
-
" 4,\n",
|
745 |
-
" 7,\n",
|
746 |
-
" 7,\n",
|
747 |
-
" 5,\n",
|
748 |
-
" 0,\n",
|
749 |
-
" 0,\n",
|
750 |
-
" 5,\n",
|
751 |
-
" 2,\n",
|
752 |
-
" 6,\n",
|
753 |
-
" 2,\n",
|
754 |
-
" 6,\n",
|
755 |
-
" 7,\n",
|
756 |
-
" 6,\n",
|
757 |
-
" 5,\n",
|
758 |
-
" 7,\n",
|
759 |
-
" 5,\n",
|
760 |
-
" 7,\n",
|
761 |
-
" 1,\n",
|
762 |
-
" 6,\n",
|
763 |
-
" 6,\n",
|
764 |
-
" 0,\n",
|
765 |
-
" 4,\n",
|
766 |
-
" 7,\n",
|
767 |
-
" 3,\n",
|
768 |
-
" 0,\n",
|
769 |
-
" 0,\n",
|
770 |
-
" 2,\n",
|
771 |
-
" 5,\n",
|
772 |
-
" 2,\n",
|
773 |
-
" 3,\n",
|
774 |
-
" 7,\n",
|
775 |
-
" 1,\n",
|
776 |
-
" 0,\n",
|
777 |
-
" 3,\n",
|
778 |
-
" 0,\n",
|
779 |
-
" 0,\n",
|
780 |
-
" 3,\n",
|
781 |
-
" 3,\n",
|
782 |
-
" 7,\n",
|
783 |
-
" 3,\n",
|
784 |
-
" 0,\n",
|
785 |
-
" 1,\n",
|
786 |
-
" 1,\n",
|
787 |
-
" 6,\n",
|
788 |
-
" 0,\n",
|
789 |
-
" 0,\n",
|
790 |
-
" 5,\n",
|
791 |
-
" 0,\n",
|
792 |
-
" 3,\n",
|
793 |
-
" 4,\n",
|
794 |
-
" 6,\n",
|
795 |
-
" 7,\n",
|
796 |
-
" 4,\n",
|
797 |
-
" 0,\n",
|
798 |
-
" 4,\n",
|
799 |
-
" 4,\n",
|
800 |
-
" 5,\n",
|
801 |
-
" 4,\n",
|
802 |
-
" 4,\n",
|
803 |
-
" 3,\n",
|
804 |
-
" 6,\n",
|
805 |
-
" 5,\n",
|
806 |
-
" 2,\n",
|
807 |
-
" 0,\n",
|
808 |
-
" 6,\n",
|
809 |
-
" 0,\n",
|
810 |
-
" 6,\n",
|
811 |
-
" 4,\n",
|
812 |
-
" 3,\n",
|
813 |
-
" 5,\n",
|
814 |
-
" 7,\n",
|
815 |
-
" 7,\n",
|
816 |
-
" 5,\n",
|
817 |
-
" 5,\n",
|
818 |
-
" 1,\n",
|
819 |
-
" 5,\n",
|
820 |
-
" 2,\n",
|
821 |
-
" 7,\n",
|
822 |
-
" 7,\n",
|
823 |
-
" 6,\n",
|
824 |
-
" 6,\n",
|
825 |
-
" 7,\n",
|
826 |
-
" 6,\n",
|
827 |
-
" 5,\n",
|
828 |
-
" 2,\n",
|
829 |
-
" 4,\n",
|
830 |
-
" 0,\n",
|
831 |
-
" 4,\n",
|
832 |
-
" 4,\n",
|
833 |
-
" 7,\n",
|
834 |
-
" 5,\n",
|
835 |
-
" 2,\n",
|
836 |
-
" 7,\n",
|
837 |
-
" 0,\n",
|
838 |
-
" 6,\n",
|
839 |
-
" 0,\n",
|
840 |
-
" 2,\n",
|
841 |
-
" 6,\n",
|
842 |
-
" 6,\n",
|
843 |
-
" 2,\n",
|
844 |
-
" 3,\n",
|
845 |
-
" 0,\n",
|
846 |
-
" 5,\n",
|
847 |
-
" 0,\n",
|
848 |
-
" 5,\n",
|
849 |
-
" 7,\n",
|
850 |
-
" 2,\n",
|
851 |
-
" 7,\n",
|
852 |
-
" 4,\n",
|
853 |
-
" 7,\n",
|
854 |
-
" 4,\n",
|
855 |
-
" 0,\n",
|
856 |
-
" 7,\n",
|
857 |
-
" 1,\n",
|
858 |
-
" 4,\n",
|
859 |
-
" 5,\n",
|
860 |
-
" 0,\n",
|
861 |
-
" 5,\n",
|
862 |
-
" 5,\n",
|
863 |
-
" 2,\n",
|
864 |
-
" 0,\n",
|
865 |
-
" 2,\n",
|
866 |
-
" 5,\n",
|
867 |
-
" 5,\n",
|
868 |
-
" 6,\n",
|
869 |
-
" 3,\n",
|
870 |
-
" 4,\n",
|
871 |
-
" 1,\n",
|
872 |
-
" 7,\n",
|
873 |
-
" 7,\n",
|
874 |
-
" 2,\n",
|
875 |
-
" 3,\n",
|
876 |
-
" 2,\n",
|
877 |
-
" 5,\n",
|
878 |
-
" 0,\n",
|
879 |
-
" 7,\n",
|
880 |
-
" 2,\n",
|
881 |
-
" 3,\n",
|
882 |
-
" 7,\n",
|
883 |
-
" 2,\n",
|
884 |
-
" 4,\n",
|
885 |
-
" 0,\n",
|
886 |
-
" 5,\n",
|
887 |
-
" 7,\n",
|
888 |
-
" 3,\n",
|
889 |
-
" 6,\n",
|
890 |
-
" 7,\n",
|
891 |
-
" 6,\n",
|
892 |
-
" 4,\n",
|
893 |
-
" 3,\n",
|
894 |
-
" 6,\n",
|
895 |
-
" 5,\n",
|
896 |
-
" 4,\n",
|
897 |
-
" 0,\n",
|
898 |
-
" 3,\n",
|
899 |
-
" 4,\n",
|
900 |
-
" 3,\n",
|
901 |
-
" 5,\n",
|
902 |
-
" 2,\n",
|
903 |
-
" 4,\n",
|
904 |
-
" 0,\n",
|
905 |
-
" 3,\n",
|
906 |
-
" 6,\n",
|
907 |
-
" 1,\n",
|
908 |
-
" 3,\n",
|
909 |
-
" 1,\n",
|
910 |
-
" 4,\n",
|
911 |
-
" 3,\n",
|
912 |
-
" 3,\n",
|
913 |
-
" 3,\n",
|
914 |
-
" 0,\n",
|
915 |
-
" 7,\n",
|
916 |
-
" 6,\n",
|
917 |
-
" 2,\n",
|
918 |
-
" 4,\n",
|
919 |
-
" 6,\n",
|
920 |
-
" 5,\n",
|
921 |
-
" 4,\n",
|
922 |
-
" 1,\n",
|
923 |
-
" 7,\n",
|
924 |
-
" 6,\n",
|
925 |
-
" 1,\n",
|
926 |
-
" 4,\n",
|
927 |
-
" 3,\n",
|
928 |
-
" 0,\n",
|
929 |
-
" 7,\n",
|
930 |
-
" 3,\n",
|
931 |
-
" 1,\n",
|
932 |
-
" 2,\n",
|
933 |
-
" 1,\n",
|
934 |
-
" 6,\n",
|
935 |
-
" 4,\n",
|
936 |
-
" 7,\n",
|
937 |
-
" 1,\n",
|
938 |
-
" 7,\n",
|
939 |
-
" 1,\n",
|
940 |
-
" 5,\n",
|
941 |
-
" 1,\n",
|
942 |
-
" 6,\n",
|
943 |
-
" 3,\n",
|
944 |
-
" 0,\n",
|
945 |
-
" 2,\n",
|
946 |
-
" 6,\n",
|
947 |
-
" 7,\n",
|
948 |
-
" 7,\n",
|
949 |
-
" 0,\n",
|
950 |
-
" 1,\n",
|
951 |
-
" 4,\n",
|
952 |
-
" 0,\n",
|
953 |
-
" 4,\n",
|
954 |
-
" 5,\n",
|
955 |
-
" 3,\n",
|
956 |
-
" 6,\n",
|
957 |
-
" 2,\n",
|
958 |
-
" 3,\n",
|
959 |
-
" 4,\n",
|
960 |
-
" 1,\n",
|
961 |
-
" 6,\n",
|
962 |
-
" 2,\n",
|
963 |
-
" 4,\n",
|
964 |
-
" 4,\n",
|
965 |
-
" 6,\n",
|
966 |
-
" 4,\n",
|
967 |
-
" 5,\n",
|
968 |
-
" 7,\n",
|
969 |
-
" 1,\n",
|
970 |
-
" 7,\n",
|
971 |
-
" 7,\n",
|
972 |
-
" 4,\n",
|
973 |
-
" 7,\n",
|
974 |
-
" 4,\n",
|
975 |
-
" 3,\n",
|
976 |
-
" 3,\n",
|
977 |
-
" 6,\n",
|
978 |
-
" 1,\n",
|
979 |
-
" 2,\n",
|
980 |
-
" 0,\n",
|
981 |
-
" 0,\n",
|
982 |
-
" 0,\n",
|
983 |
-
" 2,\n",
|
984 |
-
" 5,\n",
|
985 |
-
" 6,\n",
|
986 |
-
" 5,\n",
|
987 |
-
" 7,\n",
|
988 |
-
" 5,\n",
|
989 |
-
" 7,\n",
|
990 |
-
" 1,\n",
|
991 |
-
" 1,\n",
|
992 |
-
" 2,\n",
|
993 |
-
" 1,\n",
|
994 |
-
" 6,\n",
|
995 |
-
" 5,\n",
|
996 |
-
" 7,\n",
|
997 |
-
" 0,\n",
|
998 |
-
" 0,\n",
|
999 |
-
" 5,\n",
|
1000 |
-
" 5,\n",
|
1001 |
-
" 0,\n",
|
1002 |
-
" 3,\n",
|
1003 |
-
" 7,\n",
|
1004 |
-
" 5,\n",
|
1005 |
-
" 2,\n",
|
1006 |
-
" 5,\n",
|
1007 |
-
" 4,\n",
|
1008 |
-
" 2,\n",
|
1009 |
-
" 3,\n",
|
1010 |
-
" 6,\n",
|
1011 |
-
" 2,\n",
|
1012 |
-
" 3,\n",
|
1013 |
-
" 6,\n",
|
1014 |
-
" 0,\n",
|
1015 |
-
" 0,\n",
|
1016 |
-
" 2,\n",
|
1017 |
-
" 6,\n",
|
1018 |
-
" 0,\n",
|
1019 |
-
" 1,\n",
|
1020 |
-
" 3,\n",
|
1021 |
-
" 3,\n",
|
1022 |
-
" 6,\n",
|
1023 |
-
" 4,\n",
|
1024 |
-
" 6,\n",
|
1025 |
-
" 4,\n",
|
1026 |
-
" 6,\n",
|
1027 |
-
" 0,\n",
|
1028 |
-
" 0,\n",
|
1029 |
-
" 2,\n",
|
1030 |
-
" 3,\n",
|
1031 |
-
" 6,\n",
|
1032 |
-
" 2,\n",
|
1033 |
-
" 2,\n",
|
1034 |
-
" 6,\n",
|
1035 |
-
" 6,\n",
|
1036 |
-
" 2,\n",
|
1037 |
-
" 4,\n",
|
1038 |
-
" 3,\n",
|
1039 |
-
" 3,\n",
|
1040 |
-
" 6,\n",
|
1041 |
-
" 7,\n",
|
1042 |
-
" 7,\n",
|
1043 |
-
" 1,\n",
|
1044 |
-
" 1,\n",
|
1045 |
-
" 7,\n",
|
1046 |
-
" 7,\n",
|
1047 |
-
" 6,\n",
|
1048 |
-
" 1,\n",
|
1049 |
-
" 7,\n",
|
1050 |
-
" 0,\n",
|
1051 |
-
" 0,\n",
|
1052 |
-
" 2,\n",
|
1053 |
-
" 4,\n",
|
1054 |
-
" 2,\n",
|
1055 |
-
" 2,\n",
|
1056 |
-
" 3,\n",
|
1057 |
-
" 0,\n",
|
1058 |
-
" 1,\n",
|
1059 |
-
" 4,\n",
|
1060 |
-
" 0,\n",
|
1061 |
-
" 4,\n",
|
1062 |
-
" 6,\n",
|
1063 |
-
" 5,\n",
|
1064 |
-
" 3,\n",
|
1065 |
-
" 2,\n",
|
1066 |
-
" 3,\n",
|
1067 |
-
" 2,\n",
|
1068 |
-
" 3,\n",
|
1069 |
-
" 6,\n",
|
1070 |
-
" 2,\n",
|
1071 |
-
" 1,\n",
|
1072 |
-
" 4,\n",
|
1073 |
-
" 7,\n",
|
1074 |
-
" 6,\n",
|
1075 |
-
" 4,\n",
|
1076 |
-
" 5,\n",
|
1077 |
-
" 6,\n",
|
1078 |
-
" 7,\n",
|
1079 |
-
" 7,\n",
|
1080 |
-
" 2,\n",
|
1081 |
-
" 0,\n",
|
1082 |
-
" 5,\n",
|
1083 |
-
" 5,\n",
|
1084 |
-
" 0,\n",
|
1085 |
-
" 3,\n",
|
1086 |
-
" 6,\n",
|
1087 |
-
" 6,\n",
|
1088 |
-
" 5,\n",
|
1089 |
-
" 4,\n",
|
1090 |
-
" 4,\n",
|
1091 |
-
" 7,\n",
|
1092 |
-
" 0,\n",
|
1093 |
-
" 5,\n",
|
1094 |
-
" 1,\n",
|
1095 |
-
" 7,\n",
|
1096 |
-
" 0,\n",
|
1097 |
-
" 3,\n",
|
1098 |
-
" 1,\n",
|
1099 |
-
" 7,\n",
|
1100 |
-
" 0,\n",
|
1101 |
-
" 1,\n",
|
1102 |
-
" 4,\n",
|
1103 |
-
" 7,\n",
|
1104 |
-
" 5,\n",
|
1105 |
-
" 0,\n",
|
1106 |
-
" 4,\n",
|
1107 |
-
" 0,\n",
|
1108 |
-
" 0,\n",
|
1109 |
-
" 1,\n",
|
1110 |
-
" 0,\n",
|
1111 |
-
" 6,\n",
|
1112 |
-
" 4,\n",
|
1113 |
-
" 0,\n",
|
1114 |
-
" 5,\n",
|
1115 |
-
" 4,\n",
|
1116 |
-
" 6,\n",
|
1117 |
-
" 6,\n",
|
1118 |
-
" 7,\n",
|
1119 |
-
" 2,\n",
|
1120 |
-
" 6,\n",
|
1121 |
-
" 2,\n",
|
1122 |
-
" 6,\n",
|
1123 |
-
" 0,\n",
|
1124 |
-
" 3,\n",
|
1125 |
-
" 2,\n",
|
1126 |
-
" 2,\n",
|
1127 |
-
" 1,\n",
|
1128 |
-
" 5,\n",
|
1129 |
-
" 4,\n",
|
1130 |
-
" 7,\n",
|
1131 |
-
" 6,\n",
|
1132 |
-
" 6,\n",
|
1133 |
-
" 2,\n",
|
1134 |
-
" 5,\n",
|
1135 |
-
" 5,\n",
|
1136 |
-
" 5,\n",
|
1137 |
-
" 0,\n",
|
1138 |
-
" 3,\n",
|
1139 |
-
" 5,\n",
|
1140 |
-
" 4,\n",
|
1141 |
-
" 5,\n",
|
1142 |
-
" 7,\n",
|
1143 |
-
" 5,\n",
|
1144 |
-
" 0,\n",
|
1145 |
-
" 5,\n",
|
1146 |
-
" 0,\n",
|
1147 |
-
" 0,\n",
|
1148 |
-
" 2,\n",
|
1149 |
-
" 0,\n",
|
1150 |
-
" 2,\n",
|
1151 |
-
" 1,\n",
|
1152 |
-
" 0,\n",
|
1153 |
-
" 2,\n",
|
1154 |
-
" 4,\n",
|
1155 |
-
" 3,\n",
|
1156 |
-
" 4,\n",
|
1157 |
-
" 1,\n",
|
1158 |
-
" 7,\n",
|
1159 |
-
" 2,\n",
|
1160 |
-
" 1,\n",
|
1161 |
-
" 0,\n",
|
1162 |
-
" 3,\n",
|
1163 |
-
" 0,\n",
|
1164 |
-
" 3,\n",
|
1165 |
-
" 1,\n",
|
1166 |
-
" 1,\n",
|
1167 |
-
" 0,\n",
|
1168 |
-
" 5,\n",
|
1169 |
-
" 3,\n",
|
1170 |
-
" 1,\n",
|
1171 |
-
" 2,\n",
|
1172 |
-
" 5,\n",
|
1173 |
-
" 6,\n",
|
1174 |
-
" 7,\n",
|
1175 |
-
" 6,\n",
|
1176 |
-
" 7,\n",
|
1177 |
-
" 0,\n",
|
1178 |
-
" 2,\n",
|
1179 |
-
" 6,\n",
|
1180 |
-
" 3,\n",
|
1181 |
-
" 1,\n",
|
1182 |
-
" 5,\n",
|
1183 |
-
" 4,\n",
|
1184 |
-
" 2,\n",
|
1185 |
-
" 4,\n",
|
1186 |
-
" 6,\n",
|
1187 |
-
" 5,\n",
|
1188 |
-
" 2,\n",
|
1189 |
-
" 7,\n",
|
1190 |
-
" ...]"
|
1191 |
-
]
|
1192 |
-
},
|
1193 |
-
"execution_count": 6,
|
1194 |
-
"metadata": {},
|
1195 |
-
"output_type": "execute_result"
|
1196 |
-
}
|
1197 |
-
],
|
1198 |
-
"source": [
|
1199 |
-
"\n",
|
1200 |
-
"#--------------------------------------------------------------------------------------------\n",
|
1201 |
-
"# YOUR MODEL INFERENCE CODE HERE\n",
|
1202 |
-
"# Update the code below to replace the random baseline by your model inference within the inference pass where the energy consumption and emissions are tracked.\n",
|
1203 |
-
"#-------------------------------------------------------------------------------------------- \n",
|
1204 |
-
"\n",
|
1205 |
-
"# Make random predictions (placeholder for actual model inference)\n",
|
1206 |
-
"true_labels = test_dataset[\"label\"]\n",
|
1207 |
-
"predictions = [random.randint(0, 7) for _ in range(len(true_labels))]\n",
|
1208 |
-
"\n",
|
1209 |
-
"predictions\n",
|
1210 |
-
"\n",
|
1211 |
-
"#--------------------------------------------------------------------------------------------\n",
|
1212 |
-
"# YOUR MODEL INFERENCE STOPS HERE\n",
|
1213 |
-
"#-------------------------------------------------------------------------------------------- "
|
1214 |
-
]
|
1215 |
-
},
|
1216 |
-
{
|
1217 |
-
"cell_type": "code",
|
1218 |
-
"execution_count": 8,
|
1219 |
-
"metadata": {},
|
1220 |
-
"outputs": [
|
1221 |
-
{
|
1222 |
-
"name": "stderr",
|
1223 |
-
"output_type": "stream",
|
1224 |
-
"text": [
|
1225 |
-
"[codecarbon WARNING @ 19:53:32] Background scheduler didn't run for a long period (47s), results might be inaccurate\n",
|
1226 |
-
"[codecarbon INFO @ 19:53:32] Energy consumed for RAM : 0.000156 kWh. RAM Power : 11.755242347717285 W\n",
|
1227 |
-
"[codecarbon INFO @ 19:53:32] Delta energy consumed for CPU with constant : 0.000564 kWh, power : 42.5 W\n",
|
1228 |
-
"[codecarbon INFO @ 19:53:32] Energy consumed for All CPU : 0.000564 kWh\n",
|
1229 |
-
"[codecarbon INFO @ 19:53:32] 0.000720 kWh of electricity used since the beginning.\n"
|
1230 |
-
]
|
1231 |
-
},
|
1232 |
-
{
|
1233 |
-
"data": {
|
1234 |
-
"text/plain": [
|
1235 |
-
"EmissionsData(timestamp='2025-01-21T19:53:32', project_name='codecarbon', run_id='908f2e7e-4bb2-4991-a0f6-56bf8d7eda21', experiment_id='5b0fa12a-3dd7-45bb-9766-cc326314d9f1', duration=47.736408500000834, emissions=4.032368007471064e-05, emissions_rate=8.444466886328872e-07, cpu_power=42.5, gpu_power=0.0, ram_power=11.755242347717285, cpu_energy=0.0005636615353475565, gpu_energy=0, ram_energy=0.00015590305493261682, energy_consumed=0.0007195645902801733, country_name='France', country_iso_code='FRA', region='île-de-france', cloud_provider='', cloud_region='', os='Windows-11-10.0.22631-SP0', python_version='3.12.7', codecarbon_version='3.0.0_rc0', cpu_count=12, cpu_model='13th Gen Intel(R) Core(TM) i7-1365U', gpu_count=None, gpu_model=None, longitude=2.3494, latitude=48.8558, ram_total_size=31.347312927246094, tracking_mode='machine', on_cloud='N', pue=1.0)"
|
1236 |
-
]
|
1237 |
-
},
|
1238 |
-
"execution_count": 8,
|
1239 |
-
"metadata": {},
|
1240 |
-
"output_type": "execute_result"
|
1241 |
-
}
|
1242 |
-
],
|
1243 |
-
"source": [
|
1244 |
-
"# Stop tracking emissions\n",
|
1245 |
-
"emissions_data = tracker.stop_task()\n",
|
1246 |
-
"emissions_data"
|
1247 |
-
]
|
1248 |
-
},
|
1249 |
-
{
|
1250 |
-
"cell_type": "code",
|
1251 |
-
"execution_count": 9,
|
1252 |
-
"metadata": {},
|
1253 |
-
"outputs": [
|
1254 |
-
{
|
1255 |
-
"data": {
|
1256 |
-
"text/plain": [
|
1257 |
-
"0.10090237899917966"
|
1258 |
-
]
|
1259 |
-
},
|
1260 |
-
"execution_count": 9,
|
1261 |
-
"metadata": {},
|
1262 |
-
"output_type": "execute_result"
|
1263 |
-
}
|
1264 |
-
],
|
1265 |
-
"source": [
|
1266 |
-
"# Calculate accuracy\n",
|
1267 |
-
"accuracy = accuracy_score(true_labels, predictions)\n",
|
1268 |
-
"accuracy"
|
1269 |
-
]
|
1270 |
-
},
|
1271 |
-
{
|
1272 |
-
"cell_type": "code",
|
1273 |
-
"execution_count": 10,
|
1274 |
-
"metadata": {},
|
1275 |
-
"outputs": [
|
1276 |
-
{
|
1277 |
-
"data": {
|
1278 |
-
"text/plain": [
|
1279 |
-
"{'submission_timestamp': '2025-01-21T19:53:46.639165',\n",
|
1280 |
-
" 'accuracy': 0.10090237899917966,\n",
|
1281 |
-
" 'energy_consumed_wh': 0.7195645902801733,\n",
|
1282 |
-
" 'emissions_gco2eq': 0.040323680074710634,\n",
|
1283 |
-
" 'emissions_data': {'run_id': '908f2e7e-4bb2-4991-a0f6-56bf8d7eda21',\n",
|
1284 |
-
" 'duration': 47.736408500000834,\n",
|
1285 |
-
" 'emissions': 4.032368007471064e-05,\n",
|
1286 |
-
" 'emissions_rate': 8.444466886328872e-07,\n",
|
1287 |
-
" 'cpu_power': 42.5,\n",
|
1288 |
-
" 'gpu_power': 0.0,\n",
|
1289 |
-
" 'ram_power': 11.755242347717285,\n",
|
1290 |
-
" 'cpu_energy': 0.0005636615353475565,\n",
|
1291 |
-
" 'gpu_energy': 0,\n",
|
1292 |
-
" 'ram_energy': 0.00015590305493261682,\n",
|
1293 |
-
" 'energy_consumed': 0.0007195645902801733,\n",
|
1294 |
-
" 'country_name': 'France',\n",
|
1295 |
-
" 'country_iso_code': 'FRA',\n",
|
1296 |
-
" 'region': 'île-de-france',\n",
|
1297 |
-
" 'cloud_provider': '',\n",
|
1298 |
-
" 'cloud_region': '',\n",
|
1299 |
-
" 'os': 'Windows-11-10.0.22631-SP0',\n",
|
1300 |
-
" 'python_version': '3.12.7',\n",
|
1301 |
-
" 'codecarbon_version': '3.0.0_rc0',\n",
|
1302 |
-
" 'cpu_count': 12,\n",
|
1303 |
-
" 'cpu_model': '13th Gen Intel(R) Core(TM) i7-1365U',\n",
|
1304 |
-
" 'gpu_count': None,\n",
|
1305 |
-
" 'gpu_model': None,\n",
|
1306 |
-
" 'ram_total_size': 31.347312927246094,\n",
|
1307 |
-
" 'tracking_mode': 'machine',\n",
|
1308 |
-
" 'on_cloud': 'N',\n",
|
1309 |
-
" 'pue': 1.0},\n",
|
1310 |
-
" 'dataset_config': {'dataset_name': 'QuotaClimat/frugalaichallenge-text-train',\n",
|
1311 |
-
" 'test_size': 0.2,\n",
|
1312 |
-
" 'test_seed': 42}}"
|
1313 |
-
]
|
1314 |
-
},
|
1315 |
-
"execution_count": 10,
|
1316 |
-
"metadata": {},
|
1317 |
-
"output_type": "execute_result"
|
1318 |
-
}
|
1319 |
-
],
|
1320 |
-
"source": [
|
1321 |
-
"# Prepare results dictionary\n",
|
1322 |
-
"results = {\n",
|
1323 |
-
" \"submission_timestamp\": datetime.now().isoformat(),\n",
|
1324 |
-
" \"accuracy\": float(accuracy),\n",
|
1325 |
-
" \"energy_consumed_wh\": emissions_data.energy_consumed * 1000,\n",
|
1326 |
-
" \"emissions_gco2eq\": emissions_data.emissions * 1000,\n",
|
1327 |
-
" \"emissions_data\": clean_emissions_data(emissions_data),\n",
|
1328 |
-
" \"dataset_config\": {\n",
|
1329 |
-
" \"dataset_name\": request.dataset_name,\n",
|
1330 |
-
" \"test_size\": request.test_size,\n",
|
1331 |
-
" \"test_seed\": request.test_seed\n",
|
1332 |
-
" }\n",
|
1333 |
-
"}\n",
|
1334 |
-
"\n",
|
1335 |
-
"results"
|
1336 |
-
]
|
1337 |
-
},
|
1338 |
-
{
|
1339 |
-
"cell_type": "markdown",
|
1340 |
-
"metadata": {},
|
1341 |
-
"source": [
|
1342 |
-
"## Development of the model"
|
1343 |
-
]
|
1344 |
-
},
|
1345 |
-
{
|
1346 |
-
"cell_type": "code",
|
1347 |
-
"execution_count": 11,
|
1348 |
-
"metadata": {},
|
1349 |
-
"outputs": [
|
1350 |
-
{
|
1351 |
-
"data": {
|
1352 |
-
"application/vnd.jupyter.widget-view+json": {
|
1353 |
-
"model_id": "90f50ab19698484489f36976745efad3",
|
1354 |
-
"version_major": 2,
|
1355 |
-
"version_minor": 0
|
1356 |
-
},
|
1357 |
-
"text/plain": [
|
1358 |
-
"config.json: 0%| | 0.00/1.15k [00:00<?, ?B/s]"
|
1359 |
-
]
|
1360 |
-
},
|
1361 |
-
"metadata": {},
|
1362 |
-
"output_type": "display_data"
|
1363 |
-
},
|
1364 |
-
{
|
1365 |
-
"name": "stderr",
|
1366 |
-
"output_type": "stream",
|
1367 |
-
"text": [
|
1368 |
-
"c:\\Users\\theo.alvesdacosta\\AppData\\Local\\anaconda3\\Lib\\site-packages\\huggingface_hub\\file_download.py:139: UserWarning: `huggingface_hub` cache-system uses symlinks by default to efficiently store duplicated files but your machine does not support them in C:\\Users\\theo.alvesdacosta\\.cache\\huggingface\\hub\\models--facebook--bart-large-mnli. Caching files will still work but in a degraded version that might require more space on your disk. This warning can be disabled by setting the `HF_HUB_DISABLE_SYMLINKS_WARNING` environment variable. For more details, see https://huggingface.co/docs/huggingface_hub/how-to-cache#limitations.\n",
|
1369 |
-
"To support symlinks on Windows, you either need to activate Developer Mode or to run Python as an administrator. In order to activate developer mode, see this article: https://docs.microsoft.com/en-us/windows/apps/get-started/enable-your-device-for-development\n",
|
1370 |
-
" warnings.warn(message)\n"
|
1371 |
-
]
|
1372 |
-
},
|
1373 |
-
{
|
1374 |
-
"data": {
|
1375 |
-
"application/vnd.jupyter.widget-view+json": {
|
1376 |
-
"model_id": "6e3974d8ff284603821f7beca9bd353d",
|
1377 |
-
"version_major": 2,
|
1378 |
-
"version_minor": 0
|
1379 |
-
},
|
1380 |
-
"text/plain": [
|
1381 |
-
"model.safetensors: 0%| | 0.00/1.63G [00:00<?, ?B/s]"
|
1382 |
-
]
|
1383 |
-
},
|
1384 |
-
"metadata": {},
|
1385 |
-
"output_type": "display_data"
|
1386 |
-
},
|
1387 |
-
{
|
1388 |
-
"data": {
|
1389 |
-
"application/vnd.jupyter.widget-view+json": {
|
1390 |
-
"model_id": "bc29cb379c644b00b1bdf61d5426d99d",
|
1391 |
-
"version_major": 2,
|
1392 |
-
"version_minor": 0
|
1393 |
-
},
|
1394 |
-
"text/plain": [
|
1395 |
-
"tokenizer_config.json: 0%| | 0.00/26.0 [00:00<?, ?B/s]"
|
1396 |
-
]
|
1397 |
-
},
|
1398 |
-
"metadata": {},
|
1399 |
-
"output_type": "display_data"
|
1400 |
-
},
|
1401 |
-
{
|
1402 |
-
"data": {
|
1403 |
-
"application/vnd.jupyter.widget-view+json": {
|
1404 |
-
"model_id": "635503cf819747c9a83f22aa4f2f11db",
|
1405 |
-
"version_major": 2,
|
1406 |
-
"version_minor": 0
|
1407 |
-
},
|
1408 |
-
"text/plain": [
|
1409 |
-
"vocab.json: 0%| | 0.00/899k [00:00<?, ?B/s]"
|
1410 |
-
]
|
1411 |
-
},
|
1412 |
-
"metadata": {},
|
1413 |
-
"output_type": "display_data"
|
1414 |
-
},
|
1415 |
-
{
|
1416 |
-
"data": {
|
1417 |
-
"application/vnd.jupyter.widget-view+json": {
|
1418 |
-
"model_id": "3a5f53e451e8483ca7c33f42245abd13",
|
1419 |
-
"version_major": 2,
|
1420 |
-
"version_minor": 0
|
1421 |
-
},
|
1422 |
-
"text/plain": [
|
1423 |
-
"merges.txt: 0%| | 0.00/456k [00:00<?, ?B/s]"
|
1424 |
-
]
|
1425 |
-
},
|
1426 |
-
"metadata": {},
|
1427 |
-
"output_type": "display_data"
|
1428 |
-
},
|
1429 |
-
{
|
1430 |
-
"data": {
|
1431 |
-
"application/vnd.jupyter.widget-view+json": {
|
1432 |
-
"model_id": "84f922d1b68a4a0faa5e920d004efca0",
|
1433 |
-
"version_major": 2,
|
1434 |
-
"version_minor": 0
|
1435 |
-
},
|
1436 |
-
"text/plain": [
|
1437 |
-
"tokenizer.json: 0%| | 0.00/1.36M [00:00<?, ?B/s]"
|
1438 |
-
]
|
1439 |
-
},
|
1440 |
-
"metadata": {},
|
1441 |
-
"output_type": "display_data"
|
1442 |
-
},
|
1443 |
-
{
|
1444 |
-
"name": "stderr",
|
1445 |
-
"output_type": "stream",
|
1446 |
-
"text": [
|
1447 |
-
"Device set to use cpu\n"
|
1448 |
-
]
|
1449 |
-
}
|
1450 |
-
],
|
1451 |
-
"source": [
|
1452 |
-
"from transformers import pipeline\n",
|
1453 |
-
"classifier = pipeline(\"zero-shot-classification\",\n",
|
1454 |
-
" model=\"facebook/bart-large-mnli\")\n"
|
1455 |
-
]
|
1456 |
-
},
|
1457 |
-
{
|
1458 |
-
"cell_type": "code",
|
1459 |
-
"execution_count": 14,
|
1460 |
-
"metadata": {},
|
1461 |
-
"outputs": [],
|
1462 |
-
"source": [
|
1463 |
-
"sequence_to_classify = \"one day I will see the world\"\n",
|
1464 |
-
"\n",
|
1465 |
-
"candidate_labels = [\n",
|
1466 |
-
" \"Not related to climate change disinformation\",\n",
|
1467 |
-
" \"Climate change is not real and not happening\",\n",
|
1468 |
-
" \"Climate change is not human-induced\",\n",
|
1469 |
-
" \"Climate change impacts are not that bad\",\n",
|
1470 |
-
" \"Climate change solutions are harmful and unnecessary\",\n",
|
1471 |
-
" \"Climate change science is unreliable\",\n",
|
1472 |
-
" \"Climate change proponents are biased\",\n",
|
1473 |
-
" \"Fossil fuels are needed to address climate change\"\n",
|
1474 |
-
"]"
|
1475 |
-
]
|
1476 |
-
},
|
1477 |
-
{
|
1478 |
-
"cell_type": "code",
|
1479 |
-
"execution_count": 15,
|
1480 |
-
"metadata": {},
|
1481 |
-
"outputs": [
|
1482 |
-
{
|
1483 |
-
"data": {
|
1484 |
-
"text/plain": [
|
1485 |
-
"{'sequence': 'one day I will see the world',\n",
|
1486 |
-
" 'labels': ['Fossil fuels are needed to address climate change',\n",
|
1487 |
-
" 'Climate change science is unreliable',\n",
|
1488 |
-
" 'Not related to climate change disinformation',\n",
|
1489 |
-
" 'Climate change proponents are biased',\n",
|
1490 |
-
" 'Climate change impacts are not that bad',\n",
|
1491 |
-
" 'Climate change solutions are harmful and unnecessary',\n",
|
1492 |
-
" 'Climate change is not human-induced',\n",
|
1493 |
-
" 'Climate change is not real and not happening'],\n",
|
1494 |
-
" 'scores': [0.16242119669914246,\n",
|
1495 |
-
" 0.15683825314044952,\n",
|
1496 |
-
" 0.1564282774925232,\n",
|
1497 |
-
" 0.14603719115257263,\n",
|
1498 |
-
" 0.12794046103954315,\n",
|
1499 |
-
" 0.10180754214525223,\n",
|
1500 |
-
" 0.0936085507273674,\n",
|
1501 |
-
" 0.0549185685813427]}"
|
1502 |
-
]
|
1503 |
-
},
|
1504 |
-
"execution_count": 15,
|
1505 |
-
"metadata": {},
|
1506 |
-
"output_type": "execute_result"
|
1507 |
-
}
|
1508 |
-
],
|
1509 |
-
"source": [
|
1510 |
-
"classifier(sequence_to_classify, candidate_labels)"
|
1511 |
-
]
|
1512 |
-
},
|
1513 |
-
{
|
1514 |
-
"cell_type": "code",
|
1515 |
-
"execution_count": 26,
|
1516 |
-
"metadata": {},
|
1517 |
-
"outputs": [
|
1518 |
-
{
|
1519 |
-
"name": "stderr",
|
1520 |
-
"output_type": "stream",
|
1521 |
-
"text": [
|
1522 |
-
"[codecarbon WARNING @ 11:00:07] Already started tracking\n"
|
1523 |
-
]
|
1524 |
-
},
|
1525 |
-
{
|
1526 |
-
"data": {
|
1527 |
-
"application/vnd.jupyter.widget-view+json": {
|
1528 |
-
"model_id": "5d66a13f76a4411d95b62d4a73012495",
|
1529 |
-
"version_major": 2,
|
1530 |
-
"version_minor": 0
|
1531 |
-
},
|
1532 |
-
"text/plain": [
|
1533 |
-
"0it [00:00, ?it/s]"
|
1534 |
-
]
|
1535 |
-
},
|
1536 |
-
"metadata": {},
|
1537 |
-
"output_type": "display_data"
|
1538 |
-
},
|
1539 |
-
{
|
1540 |
-
"name": "stderr",
|
1541 |
-
"output_type": "stream",
|
1542 |
-
"text": [
|
1543 |
-
"[codecarbon WARNING @ 11:05:57] Background scheduler didn't run for a long period (349s), results might be inaccurate\n",
|
1544 |
-
"[codecarbon INFO @ 11:05:57] Energy consumed for RAM : 0.018069 kWh. RAM Power : 11.755242347717285 W\n",
|
1545 |
-
"[codecarbon INFO @ 11:05:57] Delta energy consumed for CPU with constant : 0.004122 kWh, power : 42.5 W\n",
|
1546 |
-
"[codecarbon INFO @ 11:05:57] Energy consumed for All CPU : 0.065327 kWh\n",
|
1547 |
-
"[codecarbon INFO @ 11:05:57] 0.083395 kWh of electricity used since the beginning.\n"
|
1548 |
-
]
|
1549 |
-
},
|
1550 |
-
{
|
1551 |
-
"data": {
|
1552 |
-
"text/plain": [
|
1553 |
-
"EmissionsData(timestamp='2025-01-22T11:05:57', project_name='codecarbon', run_id='908f2e7e-4bb2-4991-a0f6-56bf8d7eda21', experiment_id='5b0fa12a-3dd7-45bb-9766-cc326314d9f1', duration=349.19709450000664, emissions=0.0002949120266226386, emissions_rate=8.445461750018632e-07, cpu_power=42.5, gpu_power=0.0, ram_power=11.755242347717285, cpu_energy=0.004122396676597424, gpu_energy=0, ram_energy=0.0011402244733631148, energy_consumed=0.005262621149960539, country_name='France', country_iso_code='FRA', region='île-de-france', cloud_provider='', cloud_region='', os='Windows-11-10.0.22631-SP0', python_version='3.12.7', codecarbon_version='3.0.0_rc0', cpu_count=12, cpu_model='13th Gen Intel(R) Core(TM) i7-1365U', gpu_count=None, gpu_model=None, longitude=2.3494, latitude=48.8558, ram_total_size=31.347312927246094, tracking_mode='machine', on_cloud='N', pue=1.0)"
|
1554 |
-
]
|
1555 |
-
},
|
1556 |
-
"execution_count": 26,
|
1557 |
-
"metadata": {},
|
1558 |
-
"output_type": "execute_result"
|
1559 |
-
}
|
1560 |
-
],
|
1561 |
-
"source": [
|
1562 |
-
"# Start tracking emissions\n",
|
1563 |
-
"tracker.start()\n",
|
1564 |
-
"tracker.start_task(\"inference\")\n",
|
1565 |
-
"\n",
|
1566 |
-
"from tqdm.auto import tqdm\n",
|
1567 |
-
"predictions = []\n",
|
1568 |
-
"\n",
|
1569 |
-
"\n",
|
1570 |
-
"\n",
|
1571 |
-
"# Option 1: Simple loop approach\n",
|
1572 |
-
"\n",
|
1573 |
-
"for i, text in tqdm(enumerate(test_dataset[\"quote\"])):\n",
|
1574 |
-
"\n",
|
1575 |
-
" result = classifier(text, candidate_labels)\n",
|
1576 |
-
"\n",
|
1577 |
-
" # Get index of highest scoring label\n",
|
1578 |
-
"\n",
|
1579 |
-
" pred_label = candidate_labels.index(result[\"labels\"][0])\n",
|
1580 |
-
"\n",
|
1581 |
-
" predictions.append(pred_label)\n",
|
1582 |
-
" if i == 100:\n",
|
1583 |
-
" break\n",
|
1584 |
-
"\n",
|
1585 |
-
"\n",
|
1586 |
-
"# Stop tracking emissions\n",
|
1587 |
-
"emissions_data = tracker.stop_task()\n",
|
1588 |
-
"emissions_data\n"
|
1589 |
-
]
|
1590 |
-
},
|
1591 |
-
{
|
1592 |
-
"cell_type": "code",
|
1593 |
-
"execution_count": 28,
|
1594 |
-
"metadata": {},
|
1595 |
-
"outputs": [
|
1596 |
-
{
|
1597 |
-
"data": {
|
1598 |
-
"text/plain": [
|
1599 |
-
"0.4"
|
1600 |
-
]
|
1601 |
-
},
|
1602 |
-
"execution_count": 28,
|
1603 |
-
"metadata": {},
|
1604 |
-
"output_type": "execute_result"
|
1605 |
-
}
|
1606 |
-
],
|
1607 |
-
"source": [
|
1608 |
-
"# Calculate accuracy\n",
|
1609 |
-
"accuracy = accuracy_score(true_labels[:100], predictions[:100])\n",
|
1610 |
-
"accuracy"
|
1611 |
-
]
|
1612 |
-
},
|
1613 |
-
{
|
1614 |
-
"cell_type": "code",
|
1615 |
-
"execution_count": null,
|
1616 |
-
"metadata": {},
|
1617 |
-
"outputs": [],
|
1618 |
-
"source": []
|
1619 |
-
}
|
1620 |
-
],
|
1621 |
-
"metadata": {
|
1622 |
-
"kernelspec": {
|
1623 |
-
"display_name": "base",
|
1624 |
-
"language": "python",
|
1625 |
-
"name": "python3"
|
1626 |
-
},
|
1627 |
-
"language_info": {
|
1628 |
-
"codemirror_mode": {
|
1629 |
-
"name": "ipython",
|
1630 |
-
"version": 3
|
1631 |
-
},
|
1632 |
-
"file_extension": ".py",
|
1633 |
-
"mimetype": "text/x-python",
|
1634 |
-
"name": "python",
|
1635 |
-
"nbconvert_exporter": "python",
|
1636 |
-
"pygments_lexer": "ipython3",
|
1637 |
-
"version": "3.12.7"
|
1638 |
-
}
|
1639 |
-
},
|
1640 |
-
"nbformat": 4,
|
1641 |
-
"nbformat_minor": 2
|
1642 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
src/load_data.py
ADDED
@@ -0,0 +1,97 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Load dataset and save locally in Ultralytics format"""
|
2 |
+
|
3 |
+
from datasets import load_dataset
|
4 |
+
import logging
|
5 |
+
import os
|
6 |
+
import pandas as pd
|
7 |
+
|
8 |
+
|
9 |
+
# Save in Ultralytics format
|
10 |
+
def save_ultralytics_format(dataset_split, split, IMAGE_DIR, LABEL_DIR):
|
11 |
+
"""Save a dataset split into the Ultralytics format.
|
12 |
+
|
13 |
+
Args:
|
14 |
+
dataset_split: The dataset split (e.g., dataset["train"])
|
15 |
+
split: "train" or "val"
|
16 |
+
"""
|
17 |
+
image_split_dir = os.path.join(IMAGE_DIR, split)
|
18 |
+
label_split_dir = os.path.join(LABEL_DIR, split)
|
19 |
+
if len(os.listdir(image_split_dir)) > 0 or len(os.listdir(label_split_dir)) > 0:
|
20 |
+
logging.info(f"{image_split_dir} or {label_split_dir} not empty: passing")
|
21 |
+
else:
|
22 |
+
for example in dataset_split:
|
23 |
+
# Save image to appropriate folder
|
24 |
+
image = example["image"] # PIL.Image.Image
|
25 |
+
image_name = example["image_name"] # Original file name
|
26 |
+
output_image_path = os.path.join(image_split_dir, image_name)
|
27 |
+
# Save image object to disk
|
28 |
+
image.save(output_image_path)
|
29 |
+
|
30 |
+
# Save label
|
31 |
+
annotations = example["annotations"]
|
32 |
+
label_name = image_name.replace(".jpg", ".txt").replace(".png", ".txt")
|
33 |
+
output_label_path = os.path.join(label_split_dir, label_name)
|
34 |
+
# Save label file
|
35 |
+
with open(output_label_path, "w") as label_file:
|
36 |
+
label_file.write(annotations)
|
37 |
+
|
38 |
+
logging.info(f"Dataset {split} split exported to Ultralytics format")
|
39 |
+
|
40 |
+
|
41 |
+
def create_df(ds, split_name, OUTPUT_DIR):
|
42 |
+
"""Create dataframe from dataset"""
|
43 |
+
df = pd.DataFrame(
|
44 |
+
[[i.size[0], i.size[1], i.format, i.mode] for i in ds["image"]],
|
45 |
+
columns=["width", "height", "format", "mode"]
|
46 |
+
)
|
47 |
+
df["name"] = ds["image_name"]
|
48 |
+
df["uri"] = df['name'].apply(lambda x: os.path.join(OUTPUT_DIR, "images", split_name, x))
|
49 |
+
df["annotations"] = ds["annotations"]
|
50 |
+
df["partner"] = ds["partner"]
|
51 |
+
df["camera"] = ds["camera"]
|
52 |
+
df["timestamp"] = ds["date"]
|
53 |
+
|
54 |
+
return df
|
55 |
+
|
56 |
+
|
57 |
+
def load_data(OUTPUT_DIR, REPO_ID, DB_INFO_URI):
|
58 |
+
"""Load data and save to local directory in Ultralytics format
|
59 |
+
"""
|
60 |
+
|
61 |
+
# Check if data information already exists before eventually loading model
|
62 |
+
db_info_path = os.path.join(OUTPUT_DIR, DB_INFO_URI)
|
63 |
+
if os.path.exists(db_info_path):
|
64 |
+
df = pd.read_csv(db_info_path, index_col=0)
|
65 |
+
return df
|
66 |
+
|
67 |
+
# Create the directory structure
|
68 |
+
IMAGE_DIR = os.path.join(OUTPUT_DIR, "images")
|
69 |
+
LABEL_DIR = os.path.join(OUTPUT_DIR, "labels")
|
70 |
+
for split in ["train", "val"]:
|
71 |
+
os.makedirs(os.path.join(IMAGE_DIR, split), exist_ok=True)
|
72 |
+
os.makedirs(os.path.join(LABEL_DIR, split), exist_ok=True)
|
73 |
+
|
74 |
+
# Load the dataset from the Hugging Face Hub
|
75 |
+
dataset = load_dataset(REPO_ID)
|
76 |
+
logging.info("Dataset loaded in cache folder")
|
77 |
+
|
78 |
+
# Save train and validation splits
|
79 |
+
save_ultralytics_format(dataset["train"], "train", IMAGE_DIR, LABEL_DIR)
|
80 |
+
save_ultralytics_format(dataset["val"], "val", IMAGE_DIR, LABEL_DIR)
|
81 |
+
|
82 |
+
# Create global dataframe from splits
|
83 |
+
df_val = create_df(dataset["val"], "val", OUTPUT_DIR)
|
84 |
+
# Separate train to save memory
|
85 |
+
df_train_1 = create_df(dataset["train"][:10000], "train", OUTPUT_DIR)
|
86 |
+
df_train_2 = create_df(dataset["train"][10000:20000], "train", OUTPUT_DIR)
|
87 |
+
df_train_3 = create_df(dataset["train"][20000:], "train", OUTPUT_DIR)
|
88 |
+
# Save as one CSV
|
89 |
+
df = pd.concat([df_val, df_train_1, df_train_2, df_train_3], axis=0, ignore_index=True)
|
90 |
+
with open(db_info_path, "wb") as f:
|
91 |
+
df.to_csv(f)
|
92 |
+
|
93 |
+
return df
|
94 |
+
|
95 |
+
|
96 |
+
if __name__ == "__main__":
|
97 |
+
help()
|
src/models.py
ADDED
@@ -0,0 +1,395 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Training utilities"""
|
2 |
+
|
3 |
+
# OS & env
|
4 |
+
import os
|
5 |
+
import logging
|
6 |
+
import datetime
|
7 |
+
import time
|
8 |
+
|
9 |
+
# DS, ML & DL
|
10 |
+
import numpy as np
|
11 |
+
from sklearn.metrics import confusion_matrix, classification_report
|
12 |
+
from keras.utils import image_dataset_from_directory
|
13 |
+
from keras.layers import RandomFlip, RandomRotation, RandomZoom
|
14 |
+
from keras.layers import GaussianNoise, RandomContrast, RandomBrightness
|
15 |
+
from tensorflow.keras.callbacks import Callback, TensorBoard
|
16 |
+
from tensorflow.keras.callbacks import EarlyStopping, ModelCheckpoint
|
17 |
+
import tensorflow as tf
|
18 |
+
|
19 |
+
# images & data viz
|
20 |
+
import matplotlib.pyplot as plt
|
21 |
+
import seaborn as sns
|
22 |
+
|
23 |
+
|
24 |
+
class ConditionalAugmentation(tf.keras.layers.Layer):
|
25 |
+
def __init__(self, rate=0.2, **kwargs):
|
26 |
+
super(ConditionalAugmentation, self).__init__(**kwargs)
|
27 |
+
self.rate = rate
|
28 |
+
self.flip = RandomFlip("horizontal")
|
29 |
+
self.rotation = RandomRotation(0.25)
|
30 |
+
self.zoom = RandomZoom(0.1)
|
31 |
+
self.noise = GaussianNoise(0.1)
|
32 |
+
self.contrast = RandomContrast(0.1)
|
33 |
+
self.brightness = RandomBrightness(0.1)
|
34 |
+
|
35 |
+
def call(self, inputs, training=None):
|
36 |
+
if training:
|
37 |
+
x = inputs
|
38 |
+
x = tf.cond(
|
39 |
+
tf.random.uniform(()) < self.rate, lambda: self.flip(x), lambda: x
|
40 |
+
)
|
41 |
+
x = tf.cond(
|
42 |
+
tf.random.uniform(()) < self.rate, lambda: self.rotation(x), lambda: x
|
43 |
+
)
|
44 |
+
x = tf.cond(
|
45 |
+
tf.random.uniform(()) < self.rate, lambda: self.zoom(x), lambda: x
|
46 |
+
)
|
47 |
+
x = tf.cond(
|
48 |
+
tf.random.uniform(()) < self.rate, lambda: self.noise(x), lambda: x
|
49 |
+
)
|
50 |
+
x = tf.cond(
|
51 |
+
tf.random.uniform(()) < self.rate, lambda: self.contrast(x), lambda: x
|
52 |
+
)
|
53 |
+
x = tf.cond(
|
54 |
+
tf.random.uniform(()) < self.rate, lambda: self.brightness(x), lambda: x
|
55 |
+
)
|
56 |
+
return x
|
57 |
+
return inputs
|
58 |
+
|
59 |
+
|
60 |
+
def evaluate_model(
|
61 |
+
model,
|
62 |
+
model_arch,
|
63 |
+
train_ds,
|
64 |
+
val_ds,
|
65 |
+
test_ds,
|
66 |
+
LOG_DIR,
|
67 |
+
CHKPT_DIR,
|
68 |
+
model_name="raw_model",
|
69 |
+
input_size=(224, 224),
|
70 |
+
batch_size=32,
|
71 |
+
n_epochs=10,
|
72 |
+
optimizer="adam",
|
73 |
+
loss="sparse_categorical_crossentropy",
|
74 |
+
metrics=["accuracy", "categorical_accuracy"],
|
75 |
+
) -> tuple:
|
76 |
+
"""Train, evaluate and log model from architecture and configuration
|
77 |
+
|
78 |
+
Return model, history and plot confusion matrix
|
79 |
+
"""
|
80 |
+
|
81 |
+
if not os.path.exists(CHKPT_DIR):
|
82 |
+
os.makedirs(CHKPT_DIR)
|
83 |
+
chkpt_name = model_name + ".weights.h5"
|
84 |
+
chkpt_uri = os.path.join(CHKPT_DIR, chkpt_name)
|
85 |
+
|
86 |
+
model_config = f"""
|
87 |
+
| Config | Value |
|
88 |
+
|:---:|:---:|
|
89 |
+
| **model name** | {model_name} |
|
90 |
+
| **input size** | {input_size} |
|
91 |
+
| **batch size** | {batch_size} |
|
92 |
+
| **n epochs** | {n_epochs} |
|
93 |
+
| **optimizer** | {optimizer} |
|
94 |
+
| **loss** | {loss} |
|
95 |
+
| **metrics** | {metrics} |
|
96 |
+
| **best weights URI** | {chkpt_uri} |
|
97 |
+
"""
|
98 |
+
|
99 |
+
# set log folder
|
100 |
+
log_dir = os.path.join(
|
101 |
+
LOG_DIR, model_name, datetime.datetime.now().strftime("%Y%m%d-%H%M%S")
|
102 |
+
)
|
103 |
+
|
104 |
+
# COMPLIE
|
105 |
+
logging.info("⚙️ compiling")
|
106 |
+
model.compile(
|
107 |
+
optimizer=optimizer,
|
108 |
+
loss=loss,
|
109 |
+
metrics=metrics,
|
110 |
+
)
|
111 |
+
|
112 |
+
# CALLBACKS
|
113 |
+
logging.info("🛎️ declaring callbacks")
|
114 |
+
|
115 |
+
class TimingCallback(Callback):
|
116 |
+
def __init__(self):
|
117 |
+
self.logs = []
|
118 |
+
self.start_time = None
|
119 |
+
|
120 |
+
def on_train_begin(self, logs={}):
|
121 |
+
self.start_time = time.time()
|
122 |
+
|
123 |
+
# log time by epoch
|
124 |
+
def on_epoch_end(self, epoch, logs={}):
|
125 |
+
self.logs.append(time.time() - self.start_time)
|
126 |
+
|
127 |
+
# log total time
|
128 |
+
def on_train_end(self, logs={}):
|
129 |
+
self.tot_time_sec = time.time() - self.start_time
|
130 |
+
self.total_time = f"Total train time: {self.tot_time_sec // 60 :.0f}'{self.tot_time_sec % 60 :.0f}s"
|
131 |
+
|
132 |
+
timing_callback = TimingCallback()
|
133 |
+
checkpoint = ModelCheckpoint(
|
134 |
+
chkpt_uri,
|
135 |
+
save_best_only=True,
|
136 |
+
save_weights_only=True,
|
137 |
+
)
|
138 |
+
early_stopping = EarlyStopping(
|
139 |
+
monitor="val_loss", patience=6, restore_best_weights=True
|
140 |
+
)
|
141 |
+
|
142 |
+
tensorboard_callback = TensorBoard(
|
143 |
+
log_dir=log_dir,
|
144 |
+
histogram_freq=0, # do not save weights & biases (too much memory)
|
145 |
+
write_graph=True,
|
146 |
+
write_images=True,
|
147 |
+
update_freq="epoch",
|
148 |
+
)
|
149 |
+
|
150 |
+
# FIT
|
151 |
+
logging.info("💪 starting training")
|
152 |
+
model_history = model.fit(
|
153 |
+
train_ds,
|
154 |
+
validation_data=val_ds,
|
155 |
+
epochs=n_epochs,
|
156 |
+
callbacks=[timing_callback, checkpoint, early_stopping, tensorboard_callback],
|
157 |
+
)
|
158 |
+
|
159 |
+
# EVALUATE ON TEST DATASET
|
160 |
+
logging.info("🧐 evaluating model")
|
161 |
+
model.load_weights(chkpt_uri)
|
162 |
+
test_loss, *test_metrics = model.evaluate(test_ds)
|
163 |
+
predictions = model.predict(test_ds)
|
164 |
+
|
165 |
+
# CONFUSION MATRIX
|
166 |
+
logging.info("📈 plotting results")
|
167 |
+
# get true labels from test dataset
|
168 |
+
true_labels = np.concatenate([y for x, y in test_ds], axis=0)
|
169 |
+
# convert predictions to classes
|
170 |
+
predicted_classes = np.argmax(predictions, axis=1)
|
171 |
+
# compute confusion matrix
|
172 |
+
conf_matrix = confusion_matrix(true_labels, predicted_classes)
|
173 |
+
# precision & F1 score
|
174 |
+
report = classification_report(
|
175 |
+
true_labels,
|
176 |
+
predicted_classes,
|
177 |
+
target_names=test_ds.class_names,
|
178 |
+
)
|
179 |
+
report_dict = classification_report(
|
180 |
+
true_labels,
|
181 |
+
predicted_classes,
|
182 |
+
target_names=test_ds.class_names,
|
183 |
+
output_dict=True,
|
184 |
+
)
|
185 |
+
print(report)
|
186 |
+
|
187 |
+
# plot it
|
188 |
+
conf_mtx_plot = plt.figure(figsize=(6, 4))
|
189 |
+
sns.heatmap(
|
190 |
+
conf_matrix,
|
191 |
+
annot=True,
|
192 |
+
fmt="d",
|
193 |
+
cmap="Blues",
|
194 |
+
xticklabels=test_ds.class_names,
|
195 |
+
yticklabels=test_ds.class_names,
|
196 |
+
)
|
197 |
+
plt.suptitle(f"{model_name} model", color="blue", weight="bold")
|
198 |
+
plt.title(
|
199 |
+
f"acc. {report_dict['accuracy'] :.02f} - loss {test_loss :.02f} - {timing_callback.total_time}",
|
200 |
+
fontsize=10,
|
201 |
+
)
|
202 |
+
plt.xlabel("Predictions", color="red", weight="bold")
|
203 |
+
plt.ylabel("True labels", color="green", weight="bold")
|
204 |
+
plt.show()
|
205 |
+
|
206 |
+
# convert image for Tensorboard
|
207 |
+
conf_mtx_plot.canvas.draw()
|
208 |
+
image_array = np.array(conf_mtx_plot.canvas.renderer.buffer_rgba())
|
209 |
+
conf_mtx_plot_tf = tf.convert_to_tensor(image_array)
|
210 |
+
conf_mtx_plot_tf = tf.expand_dims(conf_mtx_plot_tf, 0)
|
211 |
+
|
212 |
+
plt.close()
|
213 |
+
|
214 |
+
# LOG IN TENSORBOARD
|
215 |
+
logging.info("📓 logging results")
|
216 |
+
file_writer = tf.summary.create_file_writer(log_dir + "/metrics")
|
217 |
+
with file_writer.as_default():
|
218 |
+
tf.summary.text("configuration", model_config, step=0)
|
219 |
+
tf.summary.text("architecture", model_arch, step=0)
|
220 |
+
tf.summary.text("total_training_time", timing_callback.total_time, step=0)
|
221 |
+
for i, time_per_epoch in enumerate(timing_callback.logs):
|
222 |
+
tf.summary.scalar("time_per_epoch", time_per_epoch, step=i + 1)
|
223 |
+
tf.summary.image("confusion_matrix", conf_mtx_plot_tf, step=0)
|
224 |
+
|
225 |
+
return model, model_history
|
226 |
+
|
227 |
+
|
228 |
+
def eval_pretrained_model(
|
229 |
+
model,
|
230 |
+
train_ds,
|
231 |
+
val_ds,
|
232 |
+
test_ds,
|
233 |
+
LOG_DIR,
|
234 |
+
CHKPT_DIR,
|
235 |
+
model_name="raw_model",
|
236 |
+
input_size=(224, 224),
|
237 |
+
batch_size=32,
|
238 |
+
n_epochs=10,
|
239 |
+
optimizer="adam",
|
240 |
+
loss="sparse_categorical_crossentropy",
|
241 |
+
metrics=["accuracy"],
|
242 |
+
) -> tuple:
|
243 |
+
"""Train, evaluate and log pre-trained model from architecture and configuration
|
244 |
+
|
245 |
+
Return model, history and plot confusion matrix
|
246 |
+
"""
|
247 |
+
|
248 |
+
if not os.path.exists(CHKPT_DIR):
|
249 |
+
os.makedirs(CHKPT_DIR)
|
250 |
+
chkpt_name = model_name + ".weights.h5"
|
251 |
+
chkpt_uri = os.path.join(CHKPT_DIR, chkpt_name)
|
252 |
+
|
253 |
+
model_config = f"""
|
254 |
+
| Config | Value |
|
255 |
+
|:---:|:---:|
|
256 |
+
| **model name** | {model_name} |
|
257 |
+
| **input size** | {input_size} |
|
258 |
+
| **batch size** | {batch_size} |
|
259 |
+
| **n epochs** | {n_epochs} |
|
260 |
+
| **optimizer** | {optimizer} |
|
261 |
+
| **loss** | {loss} |
|
262 |
+
| **metrics** | {metrics} |
|
263 |
+
| **best weights URI** | {chkpt_uri} |
|
264 |
+
"""
|
265 |
+
|
266 |
+
# set log folder
|
267 |
+
log_dir = os.path.join(
|
268 |
+
LOG_DIR, model_name, datetime.datetime.now().strftime("%Y%m%d-%H%M%S")
|
269 |
+
)
|
270 |
+
|
271 |
+
# COMPLIE
|
272 |
+
logging.info("⚙️ compiling")
|
273 |
+
model.compile(
|
274 |
+
optimizer=optimizer,
|
275 |
+
loss=loss,
|
276 |
+
metrics=metrics,
|
277 |
+
)
|
278 |
+
|
279 |
+
# CALLBACKS
|
280 |
+
logging.info("🛎️ declaring callbacks")
|
281 |
+
|
282 |
+
class TimingCallback(Callback):
|
283 |
+
def __init__(self):
|
284 |
+
self.logs = []
|
285 |
+
self.start_time = None
|
286 |
+
|
287 |
+
def on_train_begin(self, logs={}):
|
288 |
+
self.start_time = time.time()
|
289 |
+
|
290 |
+
# log time by epoch
|
291 |
+
def on_epoch_end(self, epoch, logs={}):
|
292 |
+
self.logs.append(time.time() - self.start_time)
|
293 |
+
|
294 |
+
# log total time
|
295 |
+
def on_train_end(self, logs={}):
|
296 |
+
self.tot_time_sec = time.time() - self.start_time
|
297 |
+
self.total_time = f"Total train time: {self.tot_time_sec // 60 :.0f}'{self.tot_time_sec % 60 :.0f}s"
|
298 |
+
|
299 |
+
timing_callback = TimingCallback()
|
300 |
+
checkpoint = ModelCheckpoint(
|
301 |
+
chkpt_uri,
|
302 |
+
save_best_only=True,
|
303 |
+
save_weights_only=True,
|
304 |
+
)
|
305 |
+
early_stopping = EarlyStopping(
|
306 |
+
monitor="val_loss", patience=10, restore_best_weights=True
|
307 |
+
)
|
308 |
+
|
309 |
+
tensorboard_callback = TensorBoard(
|
310 |
+
log_dir=log_dir,
|
311 |
+
histogram_freq=0, # do not save weights & biases (too much memory)
|
312 |
+
write_graph=True,
|
313 |
+
write_images=True,
|
314 |
+
update_freq="epoch",
|
315 |
+
)
|
316 |
+
|
317 |
+
# FIT
|
318 |
+
logging.info("💪 starting training")
|
319 |
+
model_history = model.fit(
|
320 |
+
train_ds,
|
321 |
+
validation_data=val_ds,
|
322 |
+
epochs=n_epochs,
|
323 |
+
callbacks=[timing_callback, checkpoint, early_stopping, tensorboard_callback],
|
324 |
+
)
|
325 |
+
|
326 |
+
# EVALUATE ON TEST DATASET
|
327 |
+
logging.info("🧐 evaluating model")
|
328 |
+
model.load_weights(chkpt_uri)
|
329 |
+
test_loss, *test_metrics = model.evaluate(test_ds)
|
330 |
+
predictions = model.predict(test_ds)
|
331 |
+
|
332 |
+
# CONFUSION MATRIX
|
333 |
+
logging.info("📈 plotting results")
|
334 |
+
# get true labels from test dataset
|
335 |
+
true_labels = np.concatenate([y for x, y in test_ds], axis=0)
|
336 |
+
# convert predictions to classes
|
337 |
+
predicted_classes = np.argmax(predictions, axis=1)
|
338 |
+
# compute confusion matrix
|
339 |
+
conf_matrix = confusion_matrix(true_labels, predicted_classes)
|
340 |
+
# precision & F1 score
|
341 |
+
report = classification_report(
|
342 |
+
true_labels,
|
343 |
+
predicted_classes,
|
344 |
+
target_names=test_ds.class_names,
|
345 |
+
)
|
346 |
+
report_dict = classification_report(
|
347 |
+
true_labels,
|
348 |
+
predicted_classes,
|
349 |
+
target_names=test_ds.class_names,
|
350 |
+
output_dict=True,
|
351 |
+
)
|
352 |
+
print(report)
|
353 |
+
|
354 |
+
# plot it
|
355 |
+
conf_mtx_plot = plt.figure(figsize=(6, 4))
|
356 |
+
sns.heatmap(
|
357 |
+
conf_matrix,
|
358 |
+
annot=True,
|
359 |
+
fmt="d",
|
360 |
+
cmap="Blues",
|
361 |
+
xticklabels=test_ds.class_names,
|
362 |
+
yticklabels=test_ds.class_names,
|
363 |
+
)
|
364 |
+
plt.suptitle(f"{model_name} model", color="blue", weight="bold")
|
365 |
+
plt.title(
|
366 |
+
f"acc. {report_dict['accuracy'] :.02f} - loss {test_loss :.02f} - {timing_callback.total_time}",
|
367 |
+
fontsize=10,
|
368 |
+
)
|
369 |
+
plt.xlabel("Predictions", color="red", weight="bold")
|
370 |
+
plt.ylabel("True labels", color="green", weight="bold")
|
371 |
+
plt.show()
|
372 |
+
|
373 |
+
# convert image for Tensorboard
|
374 |
+
conf_mtx_plot.canvas.draw()
|
375 |
+
image_array = np.array(conf_mtx_plot.canvas.renderer.buffer_rgba())
|
376 |
+
conf_mtx_plot_tf = tf.convert_to_tensor(image_array)
|
377 |
+
conf_mtx_plot_tf = tf.expand_dims(conf_mtx_plot_tf, 0)
|
378 |
+
|
379 |
+
plt.close()
|
380 |
+
|
381 |
+
# LOG IN TENSORBOARD
|
382 |
+
logging.info("📓 logging results")
|
383 |
+
file_writer = tf.summary.create_file_writer(log_dir + "/metrics")
|
384 |
+
with file_writer.as_default():
|
385 |
+
tf.summary.text("configuration", model_config, step=0)
|
386 |
+
tf.summary.text("total_training_time", timing_callback.total_time, step=0)
|
387 |
+
for i, time_per_epoch in enumerate(timing_callback.logs):
|
388 |
+
tf.summary.scalar("time_per_epoch", time_per_epoch, step=i + 1)
|
389 |
+
tf.summary.image("confusion_matrix", conf_mtx_plot_tf, step=0)
|
390 |
+
|
391 |
+
return model, model_history
|
392 |
+
|
393 |
+
|
394 |
+
if __name__ == "__main__":
|
395 |
+
help()
|
tasks/utils/load_data.py
DELETED
@@ -1,59 +0,0 @@
|
|
1 |
-
"""Load dataset and save locally in Ultralytics format"""
|
2 |
-
|
3 |
-
from datasets import load_dataset
|
4 |
-
import os
|
5 |
-
|
6 |
-
|
7 |
-
def load_data(REPO_ID, OUTPUT_DIR):
|
8 |
-
"""Load data and save to local directory"""
|
9 |
-
|
10 |
-
IMAGE_DIR = os.path.join(OUTPUT_DIR, "images")
|
11 |
-
LABEL_DIR = os.path.join(OUTPUT_DIR, "labels")
|
12 |
-
|
13 |
-
# 🚧 CHECK IF FOLDER EXISTS
|
14 |
-
# 🚧 CHECK IF FOLDER EXISTS
|
15 |
-
# 🚧 CHECK IF FOLDER EXISTS
|
16 |
-
# 🚧 CHECK IF FOLDER EXISTS
|
17 |
-
|
18 |
-
# Create the directory structure
|
19 |
-
for split in ["train", "val"]:
|
20 |
-
os.makedirs(os.path.join(IMAGE_DIR, split), exist_ok=True)
|
21 |
-
os.makedirs(os.path.join(LABEL_DIR, split), exist_ok=True)
|
22 |
-
|
23 |
-
# Load the dataset from the Hugging Face Hub
|
24 |
-
dataset = load_dataset(REPO_ID)
|
25 |
-
|
26 |
-
# Save in Ultralytics format
|
27 |
-
def save_ultralytics_format(dataset_split, split):
|
28 |
-
"""
|
29 |
-
Save a dataset split into the Ultralytics format.
|
30 |
-
Args:
|
31 |
-
dataset_split: The dataset split (e.g., dataset["train"])
|
32 |
-
split: "train" or "val"
|
33 |
-
"""
|
34 |
-
for example in dataset_split:
|
35 |
-
# Save the image to the appropriate folder
|
36 |
-
image = example["image"] # PIL.Image.Image
|
37 |
-
image_name = example["image_name"] # Original file name
|
38 |
-
output_image_path = os.path.join(IMAGE_DIR, split, image_name)
|
39 |
-
|
40 |
-
# Save the image object to disk
|
41 |
-
image.save(output_image_path)
|
42 |
-
|
43 |
-
# Save label
|
44 |
-
annotations = example["annotations"]
|
45 |
-
label_name = image_name.replace(".jpg", ".txt").replace(".png", ".txt")
|
46 |
-
output_label_path = os.path.join(LABEL_DIR, split, label_name)
|
47 |
-
|
48 |
-
with open(output_label_path, "w") as label_file:
|
49 |
-
label_file.write(annotations)
|
50 |
-
|
51 |
-
# Save train and validation splits
|
52 |
-
save_ultralytics_format(dataset["train"], "train")
|
53 |
-
save_ultralytics_format(dataset["val"], "val")
|
54 |
-
|
55 |
-
print("Dataset exported to Ultralytics format.")
|
56 |
-
|
57 |
-
|
58 |
-
if __name__ == "__main__":
|
59 |
-
help()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|