|
import torch |
|
from typing import Dict, List, Any |
|
from transformers import LlamaForCausalLM, LlamaTokenizer, pipeline |
|
|
|
from pynvml import nvmlInit, nvmlDeviceGetHandleByIndex, nvmlDeviceGetMemoryInfo |
|
|
|
nvmlInit() |
|
gpu_h1 = nvmlDeviceGetHandleByIndex(0) |
|
|
|
print('loaded_imports') |
|
|
|
dtype = torch.bfloat16 if torch.cuda.get_device_capability()[0] == 8 else torch.float16 |
|
print('chose dtype', dtype) |
|
|
|
|
|
class EndpointHandler: |
|
def __init__(self, path=""): |
|
|
|
print('starting to load tokenizer') |
|
tokenizer = LlamaTokenizer.from_pretrained("/repository/orca_tokenizer", local_files_only=True) |
|
print('loaded tokenizer') |
|
gpu_info1 = nvmlDeviceGetMemoryInfo(gpu_h1) |
|
print(f'vram {gpu_info1.total} used {gpu_info1.used} free {gpu_info1.free}') |
|
model = LlamaForCausalLM.from_pretrained( |
|
"/repository/pytorch_model", |
|
device_map="auto", |
|
torch_dtype=dtype, |
|
offload_folder="offload", |
|
local_files_only=True |
|
) |
|
gpu_info1 = nvmlDeviceGetMemoryInfo(gpu_h1) |
|
print(f'vram {gpu_info1.total} used {gpu_info1.used} free {gpu_info1.free}') |
|
|
|
print('loaded model') |
|
|
|
self.pipeline = pipeline("text-generation", model=model, tokenizer=tokenizer) |
|
print('created pipeline') |
|
|
|
def __call__(self, data: Any) -> List[List[Dict[str, float]]]: |
|
print('starting to call') |
|
inputs = data.pop("inputs", data) |
|
print('inputs: ', inputs) |
|
parameters = data.pop("parameters", None) |
|
|
|
|
|
if parameters is not None: |
|
prediction = self.pipeline(inputs, **parameters) |
|
else: |
|
prediction = self.pipeline(inputs) |
|
|
|
return prediction |
|
|