--- library_name: transformers license: gemma base_model: vidore/colpaligemma-3b-pt-448-base tags: - colpali - generated_from_trainer model-index: - name: finetune_colpali_v1_2-german-4bit results: [] --- # finetune_colpali_v1_2-german-4bit This model is a fine-tuned version of [vidore/colpaligemma-3b-pt-448-base](https://huggingface.co/vidore/colpaligemma-3b-pt-448-base) on the vidore/vdsid_french dataset. It achieves the following results on the evaluation set: - Loss: 0.1351 - Model Preparation Time: 0.0074 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Model Preparation Time | |:-------------:|:------:|:----:|:---------------:|:----------------------:| | No log | 0.0533 | 1 | 0.2922 | 0.0074 | | 1.9646 | 0.5333 | 10 | 0.2693 | 0.0074 | | 1.1176 | 1.0667 | 20 | 0.2259 | 0.0074 | | 1.1675 | 1.6 | 30 | 0.1884 | 0.0074 | | 0.6123 | 2.1333 | 40 | 0.1618 | 0.0074 | | 0.4301 | 2.6667 | 50 | 0.1351 | 0.0074 | ### Framework versions - Transformers 4.46.1 - Pytorch 2.3.1 - Datasets 3.1.0 - Tokenizers 0.20.1