update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,87 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- generated_from_trainer
|
4 |
+
datasets:
|
5 |
+
- audiofolder
|
6 |
+
metrics:
|
7 |
+
- accuracy
|
8 |
+
model-index:
|
9 |
+
- name: wav2vec2-base-random-stop-classification-2
|
10 |
+
results: []
|
11 |
+
---
|
12 |
+
|
13 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
14 |
+
should probably proofread and complete it, then remove this comment. -->
|
15 |
+
|
16 |
+
# wav2vec2-base-random-stop-classification-2
|
17 |
+
|
18 |
+
This model is a fine-tuned version of [](https://huggingface.co/) on the audiofolder dataset.
|
19 |
+
It achieves the following results on the evaluation set:
|
20 |
+
- Loss: 0.4265
|
21 |
+
- Accuracy: 0.8569
|
22 |
+
|
23 |
+
## Model description
|
24 |
+
|
25 |
+
More information needed
|
26 |
+
|
27 |
+
## Intended uses & limitations
|
28 |
+
|
29 |
+
More information needed
|
30 |
+
|
31 |
+
## Training and evaluation data
|
32 |
+
|
33 |
+
More information needed
|
34 |
+
|
35 |
+
## Training procedure
|
36 |
+
|
37 |
+
### Training hyperparameters
|
38 |
+
|
39 |
+
The following hyperparameters were used during training:
|
40 |
+
- learning_rate: 3e-05
|
41 |
+
- train_batch_size: 64
|
42 |
+
- eval_batch_size: 64
|
43 |
+
- seed: 42
|
44 |
+
- gradient_accumulation_steps: 4
|
45 |
+
- total_train_batch_size: 256
|
46 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
47 |
+
- lr_scheduler_type: linear
|
48 |
+
- lr_scheduler_warmup_ratio: 0.1
|
49 |
+
- num_epochs: 25
|
50 |
+
|
51 |
+
### Training results
|
52 |
+
|
53 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
54 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
55 |
+
| 0.6925 | 0.99 | 18 | 0.6506 | 0.6049 |
|
56 |
+
| 0.6667 | 1.97 | 36 | 0.6474 | 0.6396 |
|
57 |
+
| 0.5762 | 2.96 | 54 | 0.5791 | 0.7670 |
|
58 |
+
| 0.559 | 4.0 | 73 | 0.4603 | 0.7963 |
|
59 |
+
| 0.4892 | 4.99 | 91 | 0.4248 | 0.8161 |
|
60 |
+
| 0.4853 | 5.97 | 109 | 0.4544 | 0.8113 |
|
61 |
+
| 0.4452 | 6.96 | 127 | 0.5181 | 0.8011 |
|
62 |
+
| 0.4747 | 8.0 | 146 | 0.3739 | 0.8454 |
|
63 |
+
| 0.4026 | 8.99 | 164 | 0.4483 | 0.8249 |
|
64 |
+
| 0.4326 | 9.97 | 182 | 0.3992 | 0.8447 |
|
65 |
+
| 0.4149 | 10.96 | 200 | 0.3607 | 0.8542 |
|
66 |
+
| 0.3995 | 12.0 | 219 | 0.4662 | 0.8256 |
|
67 |
+
| 0.36 | 12.99 | 237 | 0.4375 | 0.8495 |
|
68 |
+
| 0.3807 | 13.97 | 255 | 0.4013 | 0.8351 |
|
69 |
+
| 0.401 | 14.96 | 273 | 0.4875 | 0.8311 |
|
70 |
+
| 0.3349 | 16.0 | 292 | 0.3810 | 0.8610 |
|
71 |
+
| 0.3279 | 16.99 | 310 | 0.4288 | 0.8392 |
|
72 |
+
| 0.3111 | 17.97 | 328 | 0.4160 | 0.8460 |
|
73 |
+
| 0.3092 | 18.96 | 346 | 0.4469 | 0.8379 |
|
74 |
+
| 0.3202 | 20.0 | 365 | 0.4294 | 0.8563 |
|
75 |
+
| 0.3027 | 20.99 | 383 | 0.3928 | 0.8569 |
|
76 |
+
| 0.3022 | 21.97 | 401 | 0.4829 | 0.8399 |
|
77 |
+
| 0.2934 | 22.96 | 419 | 0.3978 | 0.8604 |
|
78 |
+
| 0.2789 | 24.0 | 438 | 0.4027 | 0.8610 |
|
79 |
+
| 0.2714 | 24.66 | 450 | 0.4265 | 0.8569 |
|
80 |
+
|
81 |
+
|
82 |
+
### Framework versions
|
83 |
+
|
84 |
+
- Transformers 4.27.4
|
85 |
+
- Pytorch 1.13.0
|
86 |
+
- Datasets 2.7.1
|
87 |
+
- Tokenizers 0.13.2
|