File size: 21,187 Bytes
3224233
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
---
library_name: span-marker
tags:
- span-marker
- token-classification
- ner
- named-entity-recognition
- generated_from_span_marker_trainer
datasets:
- DFKI-SLT/few-nerd
metrics:
- precision
- recall
- f1
widget:
- text: In response, in May or June 1125, a 3,000-strong Crusader coalition commanded
    by King Baldwin II of Jerusalem confronted and defeated the 15,000-strong Muslim
    coalition at the Battle of Azaz, raising the siege of the town.
- text: Cardenal made several visits to Jesuit universities in the United States,
    including the University of Detroit Mercy in 2013, and the John Carroll University
    in 2014.
- text: Other super-spreaders, defined as those that transmit SARS to at least eight
    other people, included the incidents at the Hotel Metropole in Hong Kong, the
    Amoy Gardens apartment complex in Hong Kong and one in an acute care hospital
    in Toronto, Ontario, Canada.
- text: The District Court for the Northern District of California rejected 321 Studios'
    claims for declaratory relief, holding that both DVD Copy Plus and DVD-X Copy
    violated the DMCA and that the DMCA was not unconstitutional.
- text: The Sunday Edition is a television programme broadcast on the ITV Network
    in the United Kingdom focusing on political interview and discussion, produced
    by ITV Productions.
pipeline_tag: token-classification
model-index:
- name: SpanMarker
  results:
  - task:
      type: token-classification
      name: Named Entity Recognition
    dataset:
      name: Unknown
      type: DFKI-SLT/few-nerd
      split: test
    metrics:
    - type: f1
      value: 0.703084859534267
      name: F1
    - type: precision
      value: 0.7034273336857051
      name: Precision
    - type: recall
      value: 0.7027427186979075
      name: Recall
---

# SpanMarker

This is a [SpanMarker](https://github.com/tomaarsen/SpanMarkerNER) model trained on the [DFKI-SLT/few-nerd](https://huggingface.co/datasets/DFKI-SLT/few-nerd) dataset that can be used for Named Entity Recognition.

## Model Details

### Model Description
- **Model Type:** SpanMarker
<!-- - **Encoder:** [Unknown](https://huggingface.co/unknown) -->
- **Maximum Sequence Length:** 256 tokens
- **Maximum Entity Length:** 8 words
- **Training Dataset:** [DFKI-SLT/few-nerd](https://huggingface.co/datasets/DFKI-SLT/few-nerd)
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Repository:** [SpanMarker on GitHub](https://github.com/tomaarsen/SpanMarkerNER)
- **Thesis:** [SpanMarker For Named Entity Recognition](https://raw.githubusercontent.com/tomaarsen/SpanMarkerNER/main/thesis.pdf)

### Model Labels
| Label                                    | Examples                                                                                                 |
|:-----------------------------------------|:---------------------------------------------------------------------------------------------------------|
| art-broadcastprogram                     | "Street Cents", "Corazones", "The Gale Storm Show : Oh , Susanna"                                        |
| art-film                                 | "L'Atlantide", "Shawshank Redemption", "Bosch"                                                           |
| art-music                                | "Champion Lover", "Atkinson , Danko and Ford ( with Brockie and Hilton )", "Hollywood Studio Symphony"   |
| art-other                                | "Aphrodite of Milos", "The Today Show", "Venus de Milo"                                                  |
| art-painting                             | "Production/Reproduction", "Cofiwch Dryweryn", "Touit"                                                   |
| art-writtenart                           | "Time", "Imelda de ' Lambertazzi", "The Seven Year Itch"                                                 |
| building-airport                         | "Sheremetyevo International Airport", "Luton Airport", "Newark Liberty International Airport"            |
| building-hospital                        | "Yeungnam University Hospital", "Memorial Sloan-Kettering Cancer Center", "Hokkaido University Hospital" |
| building-hotel                           | "Radisson Blu Sea Plaza Hotel", "Flamingo Hotel", "The Standard Hotel"                                   |
| building-library                         | "British Library", "Berlin State Library", "Bayerische Staatsbibliothek"                                 |
| building-other                           | "Communiplex", "Henry Ford Museum", "Alpha Recording Studios"                                            |
| building-restaurant                      | "Carnegie Deli", "Trumbull", "Fatburger"                                                                 |
| building-sportsfacility                  | "Sports Center", "Boston Garden", "Glenn Warner Soccer Facility"                                         |
| building-theater                         | "Sanders Theatre", "Pittsburgh Civic Light Opera", "National Paris Opera"                                |
| event-attack/battle/war/militaryconflict | "Vietnam War", "Jurist", "Easter Offensive"                                                              |
| event-disaster                           | "1990s North Korean famine", "the 1912 North Mount Lyell Disaster", "1693 Sicily earthquake"             |
| event-election                           | "1982 Mitcham and Morden by-election", "Elections to the European Parliament", "March 1898 elections"    |
| event-other                              | "Eastwood Scoring Stage", "Union for a Popular Movement", "Masaryk Democratic Movement"                  |
| event-protest                            | "French Revolution", "Iranian Constitutional Revolution", "Russian Revolution"                           |
| event-sportsevent                        | "World Cup", "National Champions", "Stanley Cup"                                                         |
| location-GPE                             | "Mediterranean Basin", "the Republic of Croatia", "Croatian"                                             |
| location-bodiesofwater                   | "Arthur Kill", "Atatürk Dam Lake", "Norfolk coast"                                                       |
| location-island                          | "Staten Island", "new Samsat district", "Laccadives"                                                     |
| location-mountain                        | "Miteirya Ridge", "Ruweisat Ridge", "Salamander Glacier"                                                 |
| location-other                           | "Northern City Line", "Victoria line", "Cartuther"                                                       |
| location-park                            | "Painted Desert Community Complex Historic District", "Gramercy Park", "Shenandoah National Park"        |
| location-road/railway/highway/transit    | "NJT", "Newark-Elizabeth Rail Link", "Friern Barnet Road"                                                |
| organization-company                     | "Church 's Chicken", "Texas Chicken", "Dixy Chicken"                                                     |
| organization-education                   | "Barnard College", "MIT", "Belfast Royal Academy and the Ulster College of Physical Education"           |
| organization-government/governmentagency | "Diet", "Supreme Court", "Congregazione dei Nobili"                                                      |
| organization-media/newspaper             | "Al Jazeera", "Clash", "TimeOut Melbourne"                                                               |
| organization-other                       | "Defence Sector C", "4th Army", "IAEA"                                                                   |
| organization-politicalparty              | "Al Wafa ' Islamic", "Shimpotō", "Kenseitō"                                                              |
| organization-religion                    | "Jewish", "UPCUSA", "Christian"                                                                          |
| organization-showorganization            | "Mr. Mister", "Lizzy", "Bochumer Symphoniker"                                                            |
| organization-sportsleague                | "NHL", "First Division", "China League One"                                                              |
| organization-sportsteam                  | "Arsenal", "Luc Alphand Aventures", "Tottenham"                                                          |
| other-astronomything                     | "Algol", "Zodiac", "`` Caput Larvae ''"                                                                  |
| other-award                              | "Order of the Republic of Guinea and Nigeria", "GCON", "Grand Commander of the Order of the Niger"       |
| other-biologything                       | "Amphiphysin", "BAR", "N-terminal lipid"                                                                 |
| other-chemicalthing                      | "sulfur", "uranium", "carbon dioxide"                                                                    |
| other-currency                           | "$", "Travancore Rupee", "lac crore"                                                                     |
| other-disease                            | "hypothyroidism", "bladder cancer", "French Dysentery Epidemic of 1779"                                  |
| other-educationaldegree                  | "BSc ( Hons ) in physics", "Master", "Bachelor"                                                          |
| other-god                                | "El", "Raijin", "Fujin"                                                                                  |
| other-language                           | "Latin", "English", "Breton-speaking"                                                                    |
| other-law                                | "United States Freedom Support Act", "Thirty Years ' Peace", "Leahy–Smith America Invents Act ( AIA"     |
| other-livingthing                        | "insects", "monkeys", "patchouli"                                                                        |
| other-medical                            | "pediatrician", "Pediatrics", "amitriptyline"                                                            |
| person-actor                             | "Edmund Payne", "Tchéky Karyo", "Ellaline Terriss"                                                       |
| person-artist/author                     | "Gaetano Donizett", "George Axelrod", "Hicks"                                                            |
| person-athlete                           | "Tozawa", "Jaguar", "Neville"                                                                            |
| person-director                          | "Bob Swaim", "Frank Darabont", "Richard Quine"                                                           |
| person-other                             | "Holden", "Richard Benson", "Campbell"                                                                   |
| person-politician                        | "Rivière", "Emeric", "William"                                                                           |
| person-scholar                           | "Stalmine", "Wurdack", "Stedman"                                                                         |
| person-soldier                           | "Krukenberg", "Joachim Ziegler", "Helmuth Weidling"                                                      |
| product-airplane                         | "EC135T2 CPDS", "Spey-equipped FGR.2s", "Luton"                                                          |
| product-car                              | "100EX", "Corvettes - GT1 C6R", "Phantom"                                                                |
| product-food                             | "yakiniku", "V. labrusca", "red grape"                                                                   |
| product-game                             | "Airforce Delta", "Splinter Cell", "Hardcore RPG"                                                        |
| product-other                            | "X11", "Fairbottom Bobs", "PDP-1"                                                                        |
| product-ship                             | "Essex", "HMS `` Chinkara ''", "Congress"                                                                |
| product-software                         | "Wikipedia", "Apdf", "AmiPDF"                                                                            |
| product-train                            | "High Speed Trains", "Royal Scots Grey", "55022"                                                         |
| product-weapon                           | "ZU-23-2M Wróbel", "AR-15 's", "ZU-23-2MR Wróbel II"                                                     |

## Evaluation

### Metrics
| Label                                    | Precision | Recall | F1     |
|:-----------------------------------------|:----------|:-------|:-------|
| **all**                                  | 0.7034    | 0.7027 | 0.7031 |
| art-broadcastprogram                     | 0.6024    | 0.5904 | 0.5963 |
| art-film                                 | 0.7761    | 0.7533 | 0.7645 |
| art-music                                | 0.7825    | 0.7551 | 0.7685 |
| art-other                                | 0.4193    | 0.3327 | 0.3710 |
| art-painting                             | 0.5882    | 0.5263 | 0.5556 |
| art-writtenart                           | 0.6819    | 0.6488 | 0.6649 |
| building-airport                         | 0.8064    | 0.8352 | 0.8205 |
| building-hospital                        | 0.7282    | 0.8022 | 0.7634 |
| building-hotel                           | 0.7033    | 0.7245 | 0.7138 |
| building-library                         | 0.7550    | 0.7380 | 0.7464 |
| building-other                           | 0.5867    | 0.5840 | 0.5853 |
| building-restaurant                      | 0.6205    | 0.5216 | 0.5667 |
| building-sportsfacility                  | 0.6113    | 0.7976 | 0.6921 |
| building-theater                         | 0.7060    | 0.7495 | 0.7271 |
| event-attack/battle/war/militaryconflict | 0.7945    | 0.7395 | 0.7660 |
| event-disaster                           | 0.5604    | 0.5604 | 0.5604 |
| event-election                           | 0.4286    | 0.1484 | 0.2204 |
| event-other                              | 0.4885    | 0.4400 | 0.4629 |
| event-protest                            | 0.3798    | 0.4759 | 0.4225 |
| event-sportsevent                        | 0.6198    | 0.6162 | 0.6180 |
| location-GPE                             | 0.8157    | 0.8552 | 0.8350 |
| location-bodiesofwater                   | 0.7268    | 0.7690 | 0.7473 |
| location-island                          | 0.7504    | 0.6842 | 0.7158 |
| location-mountain                        | 0.7352    | 0.7298 | 0.7325 |
| location-other                           | 0.4427    | 0.3104 | 0.3649 |
| location-park                            | 0.7153    | 0.6856 | 0.7001 |
| location-road/railway/highway/transit    | 0.7090    | 0.7324 | 0.7205 |
| organization-company                     | 0.6963    | 0.7061 | 0.7012 |
| organization-education                   | 0.7994    | 0.7986 | 0.7990 |
| organization-government/governmentagency | 0.5524    | 0.4533 | 0.4980 |
| organization-media/newspaper             | 0.6513    | 0.6656 | 0.6584 |
| organization-other                       | 0.5978    | 0.5375 | 0.5661 |
| organization-politicalparty              | 0.6793    | 0.7315 | 0.7044 |
| organization-religion                    | 0.5575    | 0.6131 | 0.5840 |
| organization-showorganization            | 0.6035    | 0.5839 | 0.5935 |
| organization-sportsleague                | 0.6393    | 0.6610 | 0.6499 |
| organization-sportsteam                  | 0.7259    | 0.7796 | 0.7518 |
| other-astronomything                     | 0.7794    | 0.8024 | 0.7907 |
| other-award                              | 0.7180    | 0.6649 | 0.6904 |
| other-biologything                       | 0.6864    | 0.6238 | 0.6536 |
| other-chemicalthing                      | 0.5688    | 0.6036 | 0.5856 |
| other-currency                           | 0.6996    | 0.8423 | 0.7643 |
| other-disease                            | 0.6591    | 0.7410 | 0.6977 |
| other-educationaldegree                  | 0.6114    | 0.6198 | 0.6156 |
| other-god                                | 0.6486    | 0.7181 | 0.6816 |
| other-language                           | 0.6507    | 0.8313 | 0.7300 |
| other-law                                | 0.6934    | 0.7331 | 0.7127 |
| other-livingthing                        | 0.6019    | 0.6605 | 0.6298 |
| other-medical                            | 0.5124    | 0.5214 | 0.5169 |
| person-actor                             | 0.8384    | 0.8051 | 0.8214 |
| person-artist/author                     | 0.7122    | 0.7531 | 0.7321 |
| person-athlete                           | 0.8318    | 0.8422 | 0.8370 |
| person-director                          | 0.7083    | 0.7365 | 0.7221 |
| person-other                             | 0.6833    | 0.6737 | 0.6785 |
| person-politician                        | 0.6807    | 0.6836 | 0.6822 |
| person-scholar                           | 0.5397    | 0.5209 | 0.5301 |
| person-soldier                           | 0.5053    | 0.5920 | 0.5452 |
| product-airplane                         | 0.6617    | 0.6692 | 0.6654 |
| product-car                              | 0.7313    | 0.7132 | 0.7222 |
| product-food                             | 0.5787    | 0.5787 | 0.5787 |
| product-game                             | 0.7364    | 0.7140 | 0.7250 |
| product-other                            | 0.5567    | 0.4210 | 0.4795 |
| product-ship                             | 0.6842    | 0.6842 | 0.6842 |
| product-software                         | 0.6495    | 0.6648 | 0.6570 |
| product-train                            | 0.5942    | 0.5924 | 0.5933 |
| product-weapon                           | 0.6435    | 0.5353 | 0.5844 |

## Uses

### Direct Use for Inference

```python
from span_marker import SpanMarkerModel

# Download from the 🤗 Hub
model = SpanMarkerModel.from_pretrained("supreethrao/instructNER_fewnerd_xl")
# Run inference
entities = model.predict("The Sunday Edition is a television programme broadcast on the ITV Network in the United Kingdom focusing on political interview and discussion, produced by ITV Productions.")
```

### Downstream Use
You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

```python
from span_marker import SpanMarkerModel, Trainer

# Download from the 🤗 Hub
model = SpanMarkerModel.from_pretrained("supreethrao/instructNER_fewnerd_xl")

# Specify a Dataset with "tokens" and "ner_tag" columns
dataset = load_dataset("conll2003") # For example CoNLL2003

# Initialize a Trainer using the pretrained model & dataset
trainer = Trainer(
    model=model,
    train_dataset=dataset["train"],
    eval_dataset=dataset["validation"],
)
trainer.train()
trainer.save_model("supreethrao/instructNER_fewnerd_xl-finetuned")
```
</details>

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Set Metrics
| Training set          | Min | Median  | Max |
|:----------------------|:----|:--------|:----|
| Sentence length       | 1   | 24.4945 | 267 |
| Entities per sentence | 0   | 2.5832  | 88  |

### Training Hyperparameters
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- distributed_type: multi-GPU
- num_devices: 2
- total_train_batch_size: 32
- total_eval_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 3
- mixed_precision_training: Native AMP

### Framework Versions
- Python: 3.10.13
- SpanMarker: 1.5.0
- Transformers: 4.35.2
- PyTorch: 2.1.1
- Datasets: 2.15.0
- Tokenizers: 0.15.0

## Citation

### BibTeX
```
@software{Aarsen_SpanMarker,
    author = {Aarsen, Tom},
    license = {Apache-2.0},
    title = {{SpanMarker for Named Entity Recognition}},
    url = {https://github.com/tomaarsen/SpanMarkerNER}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->