File size: 21,187 Bytes
3224233 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 |
---
library_name: span-marker
tags:
- span-marker
- token-classification
- ner
- named-entity-recognition
- generated_from_span_marker_trainer
datasets:
- DFKI-SLT/few-nerd
metrics:
- precision
- recall
- f1
widget:
- text: In response, in May or June 1125, a 3,000-strong Crusader coalition commanded
by King Baldwin II of Jerusalem confronted and defeated the 15,000-strong Muslim
coalition at the Battle of Azaz, raising the siege of the town.
- text: Cardenal made several visits to Jesuit universities in the United States,
including the University of Detroit Mercy in 2013, and the John Carroll University
in 2014.
- text: Other super-spreaders, defined as those that transmit SARS to at least eight
other people, included the incidents at the Hotel Metropole in Hong Kong, the
Amoy Gardens apartment complex in Hong Kong and one in an acute care hospital
in Toronto, Ontario, Canada.
- text: The District Court for the Northern District of California rejected 321 Studios'
claims for declaratory relief, holding that both DVD Copy Plus and DVD-X Copy
violated the DMCA and that the DMCA was not unconstitutional.
- text: The Sunday Edition is a television programme broadcast on the ITV Network
in the United Kingdom focusing on political interview and discussion, produced
by ITV Productions.
pipeline_tag: token-classification
model-index:
- name: SpanMarker
results:
- task:
type: token-classification
name: Named Entity Recognition
dataset:
name: Unknown
type: DFKI-SLT/few-nerd
split: test
metrics:
- type: f1
value: 0.703084859534267
name: F1
- type: precision
value: 0.7034273336857051
name: Precision
- type: recall
value: 0.7027427186979075
name: Recall
---
# SpanMarker
This is a [SpanMarker](https://github.com/tomaarsen/SpanMarkerNER) model trained on the [DFKI-SLT/few-nerd](https://huggingface.co/datasets/DFKI-SLT/few-nerd) dataset that can be used for Named Entity Recognition.
## Model Details
### Model Description
- **Model Type:** SpanMarker
<!-- - **Encoder:** [Unknown](https://huggingface.co/unknown) -->
- **Maximum Sequence Length:** 256 tokens
- **Maximum Entity Length:** 8 words
- **Training Dataset:** [DFKI-SLT/few-nerd](https://huggingface.co/datasets/DFKI-SLT/few-nerd)
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Repository:** [SpanMarker on GitHub](https://github.com/tomaarsen/SpanMarkerNER)
- **Thesis:** [SpanMarker For Named Entity Recognition](https://raw.githubusercontent.com/tomaarsen/SpanMarkerNER/main/thesis.pdf)
### Model Labels
| Label | Examples |
|:-----------------------------------------|:---------------------------------------------------------------------------------------------------------|
| art-broadcastprogram | "Street Cents", "Corazones", "The Gale Storm Show : Oh , Susanna" |
| art-film | "L'Atlantide", "Shawshank Redemption", "Bosch" |
| art-music | "Champion Lover", "Atkinson , Danko and Ford ( with Brockie and Hilton )", "Hollywood Studio Symphony" |
| art-other | "Aphrodite of Milos", "The Today Show", "Venus de Milo" |
| art-painting | "Production/Reproduction", "Cofiwch Dryweryn", "Touit" |
| art-writtenart | "Time", "Imelda de ' Lambertazzi", "The Seven Year Itch" |
| building-airport | "Sheremetyevo International Airport", "Luton Airport", "Newark Liberty International Airport" |
| building-hospital | "Yeungnam University Hospital", "Memorial Sloan-Kettering Cancer Center", "Hokkaido University Hospital" |
| building-hotel | "Radisson Blu Sea Plaza Hotel", "Flamingo Hotel", "The Standard Hotel" |
| building-library | "British Library", "Berlin State Library", "Bayerische Staatsbibliothek" |
| building-other | "Communiplex", "Henry Ford Museum", "Alpha Recording Studios" |
| building-restaurant | "Carnegie Deli", "Trumbull", "Fatburger" |
| building-sportsfacility | "Sports Center", "Boston Garden", "Glenn Warner Soccer Facility" |
| building-theater | "Sanders Theatre", "Pittsburgh Civic Light Opera", "National Paris Opera" |
| event-attack/battle/war/militaryconflict | "Vietnam War", "Jurist", "Easter Offensive" |
| event-disaster | "1990s North Korean famine", "the 1912 North Mount Lyell Disaster", "1693 Sicily earthquake" |
| event-election | "1982 Mitcham and Morden by-election", "Elections to the European Parliament", "March 1898 elections" |
| event-other | "Eastwood Scoring Stage", "Union for a Popular Movement", "Masaryk Democratic Movement" |
| event-protest | "French Revolution", "Iranian Constitutional Revolution", "Russian Revolution" |
| event-sportsevent | "World Cup", "National Champions", "Stanley Cup" |
| location-GPE | "Mediterranean Basin", "the Republic of Croatia", "Croatian" |
| location-bodiesofwater | "Arthur Kill", "Atatürk Dam Lake", "Norfolk coast" |
| location-island | "Staten Island", "new Samsat district", "Laccadives" |
| location-mountain | "Miteirya Ridge", "Ruweisat Ridge", "Salamander Glacier" |
| location-other | "Northern City Line", "Victoria line", "Cartuther" |
| location-park | "Painted Desert Community Complex Historic District", "Gramercy Park", "Shenandoah National Park" |
| location-road/railway/highway/transit | "NJT", "Newark-Elizabeth Rail Link", "Friern Barnet Road" |
| organization-company | "Church 's Chicken", "Texas Chicken", "Dixy Chicken" |
| organization-education | "Barnard College", "MIT", "Belfast Royal Academy and the Ulster College of Physical Education" |
| organization-government/governmentagency | "Diet", "Supreme Court", "Congregazione dei Nobili" |
| organization-media/newspaper | "Al Jazeera", "Clash", "TimeOut Melbourne" |
| organization-other | "Defence Sector C", "4th Army", "IAEA" |
| organization-politicalparty | "Al Wafa ' Islamic", "Shimpotō", "Kenseitō" |
| organization-religion | "Jewish", "UPCUSA", "Christian" |
| organization-showorganization | "Mr. Mister", "Lizzy", "Bochumer Symphoniker" |
| organization-sportsleague | "NHL", "First Division", "China League One" |
| organization-sportsteam | "Arsenal", "Luc Alphand Aventures", "Tottenham" |
| other-astronomything | "Algol", "Zodiac", "`` Caput Larvae ''" |
| other-award | "Order of the Republic of Guinea and Nigeria", "GCON", "Grand Commander of the Order of the Niger" |
| other-biologything | "Amphiphysin", "BAR", "N-terminal lipid" |
| other-chemicalthing | "sulfur", "uranium", "carbon dioxide" |
| other-currency | "$", "Travancore Rupee", "lac crore" |
| other-disease | "hypothyroidism", "bladder cancer", "French Dysentery Epidemic of 1779" |
| other-educationaldegree | "BSc ( Hons ) in physics", "Master", "Bachelor" |
| other-god | "El", "Raijin", "Fujin" |
| other-language | "Latin", "English", "Breton-speaking" |
| other-law | "United States Freedom Support Act", "Thirty Years ' Peace", "Leahy–Smith America Invents Act ( AIA" |
| other-livingthing | "insects", "monkeys", "patchouli" |
| other-medical | "pediatrician", "Pediatrics", "amitriptyline" |
| person-actor | "Edmund Payne", "Tchéky Karyo", "Ellaline Terriss" |
| person-artist/author | "Gaetano Donizett", "George Axelrod", "Hicks" |
| person-athlete | "Tozawa", "Jaguar", "Neville" |
| person-director | "Bob Swaim", "Frank Darabont", "Richard Quine" |
| person-other | "Holden", "Richard Benson", "Campbell" |
| person-politician | "Rivière", "Emeric", "William" |
| person-scholar | "Stalmine", "Wurdack", "Stedman" |
| person-soldier | "Krukenberg", "Joachim Ziegler", "Helmuth Weidling" |
| product-airplane | "EC135T2 CPDS", "Spey-equipped FGR.2s", "Luton" |
| product-car | "100EX", "Corvettes - GT1 C6R", "Phantom" |
| product-food | "yakiniku", "V. labrusca", "red grape" |
| product-game | "Airforce Delta", "Splinter Cell", "Hardcore RPG" |
| product-other | "X11", "Fairbottom Bobs", "PDP-1" |
| product-ship | "Essex", "HMS `` Chinkara ''", "Congress" |
| product-software | "Wikipedia", "Apdf", "AmiPDF" |
| product-train | "High Speed Trains", "Royal Scots Grey", "55022" |
| product-weapon | "ZU-23-2M Wróbel", "AR-15 's", "ZU-23-2MR Wróbel II" |
## Evaluation
### Metrics
| Label | Precision | Recall | F1 |
|:-----------------------------------------|:----------|:-------|:-------|
| **all** | 0.7034 | 0.7027 | 0.7031 |
| art-broadcastprogram | 0.6024 | 0.5904 | 0.5963 |
| art-film | 0.7761 | 0.7533 | 0.7645 |
| art-music | 0.7825 | 0.7551 | 0.7685 |
| art-other | 0.4193 | 0.3327 | 0.3710 |
| art-painting | 0.5882 | 0.5263 | 0.5556 |
| art-writtenart | 0.6819 | 0.6488 | 0.6649 |
| building-airport | 0.8064 | 0.8352 | 0.8205 |
| building-hospital | 0.7282 | 0.8022 | 0.7634 |
| building-hotel | 0.7033 | 0.7245 | 0.7138 |
| building-library | 0.7550 | 0.7380 | 0.7464 |
| building-other | 0.5867 | 0.5840 | 0.5853 |
| building-restaurant | 0.6205 | 0.5216 | 0.5667 |
| building-sportsfacility | 0.6113 | 0.7976 | 0.6921 |
| building-theater | 0.7060 | 0.7495 | 0.7271 |
| event-attack/battle/war/militaryconflict | 0.7945 | 0.7395 | 0.7660 |
| event-disaster | 0.5604 | 0.5604 | 0.5604 |
| event-election | 0.4286 | 0.1484 | 0.2204 |
| event-other | 0.4885 | 0.4400 | 0.4629 |
| event-protest | 0.3798 | 0.4759 | 0.4225 |
| event-sportsevent | 0.6198 | 0.6162 | 0.6180 |
| location-GPE | 0.8157 | 0.8552 | 0.8350 |
| location-bodiesofwater | 0.7268 | 0.7690 | 0.7473 |
| location-island | 0.7504 | 0.6842 | 0.7158 |
| location-mountain | 0.7352 | 0.7298 | 0.7325 |
| location-other | 0.4427 | 0.3104 | 0.3649 |
| location-park | 0.7153 | 0.6856 | 0.7001 |
| location-road/railway/highway/transit | 0.7090 | 0.7324 | 0.7205 |
| organization-company | 0.6963 | 0.7061 | 0.7012 |
| organization-education | 0.7994 | 0.7986 | 0.7990 |
| organization-government/governmentagency | 0.5524 | 0.4533 | 0.4980 |
| organization-media/newspaper | 0.6513 | 0.6656 | 0.6584 |
| organization-other | 0.5978 | 0.5375 | 0.5661 |
| organization-politicalparty | 0.6793 | 0.7315 | 0.7044 |
| organization-religion | 0.5575 | 0.6131 | 0.5840 |
| organization-showorganization | 0.6035 | 0.5839 | 0.5935 |
| organization-sportsleague | 0.6393 | 0.6610 | 0.6499 |
| organization-sportsteam | 0.7259 | 0.7796 | 0.7518 |
| other-astronomything | 0.7794 | 0.8024 | 0.7907 |
| other-award | 0.7180 | 0.6649 | 0.6904 |
| other-biologything | 0.6864 | 0.6238 | 0.6536 |
| other-chemicalthing | 0.5688 | 0.6036 | 0.5856 |
| other-currency | 0.6996 | 0.8423 | 0.7643 |
| other-disease | 0.6591 | 0.7410 | 0.6977 |
| other-educationaldegree | 0.6114 | 0.6198 | 0.6156 |
| other-god | 0.6486 | 0.7181 | 0.6816 |
| other-language | 0.6507 | 0.8313 | 0.7300 |
| other-law | 0.6934 | 0.7331 | 0.7127 |
| other-livingthing | 0.6019 | 0.6605 | 0.6298 |
| other-medical | 0.5124 | 0.5214 | 0.5169 |
| person-actor | 0.8384 | 0.8051 | 0.8214 |
| person-artist/author | 0.7122 | 0.7531 | 0.7321 |
| person-athlete | 0.8318 | 0.8422 | 0.8370 |
| person-director | 0.7083 | 0.7365 | 0.7221 |
| person-other | 0.6833 | 0.6737 | 0.6785 |
| person-politician | 0.6807 | 0.6836 | 0.6822 |
| person-scholar | 0.5397 | 0.5209 | 0.5301 |
| person-soldier | 0.5053 | 0.5920 | 0.5452 |
| product-airplane | 0.6617 | 0.6692 | 0.6654 |
| product-car | 0.7313 | 0.7132 | 0.7222 |
| product-food | 0.5787 | 0.5787 | 0.5787 |
| product-game | 0.7364 | 0.7140 | 0.7250 |
| product-other | 0.5567 | 0.4210 | 0.4795 |
| product-ship | 0.6842 | 0.6842 | 0.6842 |
| product-software | 0.6495 | 0.6648 | 0.6570 |
| product-train | 0.5942 | 0.5924 | 0.5933 |
| product-weapon | 0.6435 | 0.5353 | 0.5844 |
## Uses
### Direct Use for Inference
```python
from span_marker import SpanMarkerModel
# Download from the 🤗 Hub
model = SpanMarkerModel.from_pretrained("supreethrao/instructNER_fewnerd_xl")
# Run inference
entities = model.predict("The Sunday Edition is a television programme broadcast on the ITV Network in the United Kingdom focusing on political interview and discussion, produced by ITV Productions.")
```
### Downstream Use
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
```python
from span_marker import SpanMarkerModel, Trainer
# Download from the 🤗 Hub
model = SpanMarkerModel.from_pretrained("supreethrao/instructNER_fewnerd_xl")
# Specify a Dataset with "tokens" and "ner_tag" columns
dataset = load_dataset("conll2003") # For example CoNLL2003
# Initialize a Trainer using the pretrained model & dataset
trainer = Trainer(
model=model,
train_dataset=dataset["train"],
eval_dataset=dataset["validation"],
)
trainer.train()
trainer.save_model("supreethrao/instructNER_fewnerd_xl-finetuned")
```
</details>
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Set Metrics
| Training set | Min | Median | Max |
|:----------------------|:----|:--------|:----|
| Sentence length | 1 | 24.4945 | 267 |
| Entities per sentence | 0 | 2.5832 | 88 |
### Training Hyperparameters
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- distributed_type: multi-GPU
- num_devices: 2
- total_train_batch_size: 32
- total_eval_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 3
- mixed_precision_training: Native AMP
### Framework Versions
- Python: 3.10.13
- SpanMarker: 1.5.0
- Transformers: 4.35.2
- PyTorch: 2.1.1
- Datasets: 2.15.0
- Tokenizers: 0.15.0
## Citation
### BibTeX
```
@software{Aarsen_SpanMarker,
author = {Aarsen, Tom},
license = {Apache-2.0},
title = {{SpanMarker for Named Entity Recognition}},
url = {https://github.com/tomaarsen/SpanMarkerNER}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |