Saving train state of step 5000
Browse files- .ipynb_checkpoints/run_distillation-checkpoint.py +1696 -0
- checkpoint-5000-epoch-0/model.safetensors +1 -1
- checkpoint-5000-epoch-0/optimizer.bin +1 -1
- distil-whisper/events.out.tfevents.1714722015.server02.764303.0 +3 -0
- distil-whisper/events.out.tfevents.1714724453.server02.769515.0 +3 -0
- distil-whisper/events.out.tfevents.1714724491.server02.769647.0 +3 -0
.ipynb_checkpoints/run_distillation-checkpoint.py
ADDED
@@ -0,0 +1,1696 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
# coding=utf-8
|
3 |
+
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
|
4 |
+
#
|
5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
6 |
+
# you may not use this file except in compliance with the License.
|
7 |
+
# You may obtain a copy of the License at
|
8 |
+
#
|
9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
10 |
+
#
|
11 |
+
# Unless required by applicable law or agreed to in writing, software
|
12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
14 |
+
# See the License for the specific language governing permissions and
|
15 |
+
# limitations under the License.
|
16 |
+
"""
|
17 |
+
Training the Whisper model for sequence to sequence speech recognition via teacher-student distillation.
|
18 |
+
"""
|
19 |
+
# You can also adapt this script for your own distillation tasks. Pointers for this are left as comments.
|
20 |
+
|
21 |
+
import logging
|
22 |
+
import os
|
23 |
+
import re
|
24 |
+
import shutil
|
25 |
+
import sys
|
26 |
+
import time
|
27 |
+
from dataclasses import dataclass, field
|
28 |
+
from functools import partial
|
29 |
+
from pathlib import Path
|
30 |
+
from typing import Any, Dict, List, Optional, Union
|
31 |
+
|
32 |
+
import datasets
|
33 |
+
import evaluate
|
34 |
+
import numpy as np
|
35 |
+
import torch
|
36 |
+
import torch.nn as nn
|
37 |
+
import transformers
|
38 |
+
from accelerate import Accelerator
|
39 |
+
from accelerate.logging import get_logger
|
40 |
+
from datasets import (
|
41 |
+
DatasetDict,
|
42 |
+
IterableDataset,
|
43 |
+
IterableDatasetDict,
|
44 |
+
concatenate_datasets,
|
45 |
+
interleave_datasets,
|
46 |
+
load_dataset,
|
47 |
+
)
|
48 |
+
from huggingface_hub import create_repo, get_full_repo_name, upload_folder
|
49 |
+
from torch.utils.data import DataLoader
|
50 |
+
from tqdm import tqdm
|
51 |
+
from transformers import (
|
52 |
+
AddedToken,
|
53 |
+
HfArgumentParser,
|
54 |
+
Seq2SeqTrainingArguments,
|
55 |
+
WhisperConfig,
|
56 |
+
WhisperFeatureExtractor,
|
57 |
+
WhisperForConditionalGeneration,
|
58 |
+
WhisperProcessor,
|
59 |
+
WhisperTokenizerFast,
|
60 |
+
get_scheduler,
|
61 |
+
set_seed,
|
62 |
+
)
|
63 |
+
from transformers.modeling_outputs import BaseModelOutput
|
64 |
+
from transformers.models.whisper.english_normalizer import BasicTextNormalizer, EnglishTextNormalizer
|
65 |
+
from transformers.utils import check_min_version
|
66 |
+
from transformers.utils.versions import require_version
|
67 |
+
|
68 |
+
|
69 |
+
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
|
70 |
+
check_min_version("4.34.0.dev0")
|
71 |
+
|
72 |
+
require_version("datasets>=2.14.6", "To fix: `pip install --upgrade datasets`")
|
73 |
+
|
74 |
+
logger = get_logger(__name__)
|
75 |
+
|
76 |
+
|
77 |
+
@dataclass
|
78 |
+
class ModelArguments:
|
79 |
+
"""
|
80 |
+
Arguments pertaining to which model/config/tokenizer we are going to distill from.
|
81 |
+
"""
|
82 |
+
|
83 |
+
model_name_or_path: str = field(
|
84 |
+
metadata={"help": "Path to pretrained Whisper model or model identifier from huggingface.co/models"}
|
85 |
+
)
|
86 |
+
teacher_model_name_or_path: str = field(
|
87 |
+
metadata={"help": "Path to pretrained teacher model or model identifier from huggingface.co/models"}
|
88 |
+
)
|
89 |
+
config_name: Optional[str] = field(
|
90 |
+
default=None,
|
91 |
+
metadata={"help": "Pretrained config name or path if not the same as model_name"},
|
92 |
+
)
|
93 |
+
tokenizer_name: Optional[str] = field(
|
94 |
+
default=None,
|
95 |
+
metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"},
|
96 |
+
)
|
97 |
+
feature_extractor_name: Optional[str] = field(
|
98 |
+
default=None,
|
99 |
+
metadata={"help": "feature extractor name or path if not the same as model_name"},
|
100 |
+
)
|
101 |
+
cache_dir: Optional[str] = field(
|
102 |
+
default=None,
|
103 |
+
metadata={"help": "Where to store the pretrained models downloaded from huggingface.co"},
|
104 |
+
)
|
105 |
+
use_fast_tokenizer: bool = field(
|
106 |
+
default=True,
|
107 |
+
metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."},
|
108 |
+
)
|
109 |
+
model_revision: str = field(
|
110 |
+
default="main",
|
111 |
+
metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
|
112 |
+
)
|
113 |
+
subfolder: str = field(
|
114 |
+
default="",
|
115 |
+
metadata={
|
116 |
+
"help": "In case the relevant files are located inside a subfolder of the model repo on huggingface.co, you can"
|
117 |
+
"specify the folder name here."
|
118 |
+
},
|
119 |
+
)
|
120 |
+
token: str = field(
|
121 |
+
default=None,
|
122 |
+
metadata={
|
123 |
+
"help": (
|
124 |
+
"The token to use as HTTP bearer authorization for remote files. If not specified, will use the token "
|
125 |
+
"generated when running `huggingface-cli login` (stored in `~/.huggingface`)."
|
126 |
+
)
|
127 |
+
},
|
128 |
+
)
|
129 |
+
attn_implementation: Optional[str] = field(
|
130 |
+
default=None,
|
131 |
+
metadata={
|
132 |
+
"help": (
|
133 |
+
"Which attention implementation to use in the encoder and decoder attention layers. Can be one of:\n"
|
134 |
+
"1. `eager` or `None`: default Transformers attention implementation.\n"
|
135 |
+
"2. `sdpa`: Flash Attention through PyTorch SDPA. Requires `torch>=2.1`. Recommended for hardware where Flash Attention 2 is not supported, e.g. Turing GPUs, (T4, RTX 2080).\n"
|
136 |
+
"3. `flash_attn_2`: Flash Attention 2 through the Flash Attention package https://github.com/Dao-AILab/flash-attention. **Always** recommended on supported hardware (Ampere, Ada, or Hopper GPUs, e.g., A100, RTX 3090, RTX 4090, H100)."
|
137 |
+
)
|
138 |
+
},
|
139 |
+
)
|
140 |
+
|
141 |
+
def __post_init__(self):
|
142 |
+
if self.attn_implementation not in [None, "eager", "sdpa", "flash_attention_2"]:
|
143 |
+
raise ValueError(
|
144 |
+
f"Got `--attn_implementation={self.attn_implementation}`, which is an invalid attention type. Should be one of:\n"
|
145 |
+
"1. `eager` or `None`: default Transformers attention implementation.\n"
|
146 |
+
"2. `sdpa`: Flash Attention through PyTorch SDPA. Requires `torch>=2.1`. Recommended for hardware where Flash Attention 2 is not supported, e.g. Turing GPUs, (T4, RTX 2080).\n"
|
147 |
+
"3. `flash_attn_2`: Flash Attention 2 through the Flash Attention package https://github.com/Dao-AILab/flash-attention. **Always** recommended on supported hardware (Ampere, Ada, or Hopper GPUs, e.g., A100, RTX 3090, RTX 4090, H100)."
|
148 |
+
)
|
149 |
+
|
150 |
+
|
151 |
+
@dataclass
|
152 |
+
class DataTrainingArguments:
|
153 |
+
"""
|
154 |
+
Arguments pertaining to what data we are going to input our model for training and eval.
|
155 |
+
"""
|
156 |
+
|
157 |
+
train_dataset_name: str = field(
|
158 |
+
default=None,
|
159 |
+
metadata={
|
160 |
+
"help": "The name of the training dataset to use (via the datasets library). Load and combine "
|
161 |
+
"multiple datasets by separating dataset ids by a '+' symbol. For example, to load LibriSpeech "
|
162 |
+
"and Common Voice, set `train_dataset_name='librispeech_asr+common_voice'`."
|
163 |
+
},
|
164 |
+
)
|
165 |
+
train_dataset_config_name: Optional[str] = field(
|
166 |
+
default=None,
|
167 |
+
metadata={
|
168 |
+
"help": "The configuration name of the training dataset to use (via the datasets library). Load and combine "
|
169 |
+
"multiple datasets by separating dataset configs by a '+' symbol. Note that the order of the configs should "
|
170 |
+
"match the order of the datasets."
|
171 |
+
},
|
172 |
+
)
|
173 |
+
train_dataset_samples: str = field(
|
174 |
+
default=None,
|
175 |
+
metadata={
|
176 |
+
"help": "Number of samples in each dataset when loading multiple datasets with streaming mode. "
|
177 |
+
"Not required when using one dataset or non-streaming mode. The sample values provide the sampling "
|
178 |
+
"probability for each dataset. Setting them equal to the number of sample values ensures that every "
|
179 |
+
"sample from every dataset is used once per epoch."
|
180 |
+
},
|
181 |
+
)
|
182 |
+
eval_dataset_name: str = field(
|
183 |
+
default=None,
|
184 |
+
metadata={
|
185 |
+
"help": "The name of the evaluation dataset to use (via the datasets library). Defaults to the training "
|
186 |
+
"dataset name if unspecified. Load multiple evaluation datasets by separating dataset "
|
187 |
+
"ids by a '+' symbol."
|
188 |
+
},
|
189 |
+
)
|
190 |
+
eval_dataset_config_name: Optional[str] = field(
|
191 |
+
default=None,
|
192 |
+
metadata={
|
193 |
+
"help": "The configuration name of the evaluation dataset to use (via the datasets library). Defaults to the "
|
194 |
+
"training dataset config name if unspecified."
|
195 |
+
},
|
196 |
+
)
|
197 |
+
dataset_cache_dir: Optional[str] = field(
|
198 |
+
default=None,
|
199 |
+
metadata={"help": "Path to cache directory for saving and loading datasets"},
|
200 |
+
)
|
201 |
+
overwrite_cache: bool = field(
|
202 |
+
default=False,
|
203 |
+
metadata={"help": "Overwrite the cached training and evaluation sets"},
|
204 |
+
)
|
205 |
+
preprocessing_num_workers: Optional[int] = field(
|
206 |
+
default=None,
|
207 |
+
metadata={"help": "The number of processes to use for the preprocessing if using non-streaming mode."},
|
208 |
+
)
|
209 |
+
preprocessing_batch_size: Optional[int] = field(
|
210 |
+
default=256,
|
211 |
+
metadata={"help": "Number of examples per batch provided to the `prepare_dataset` function."},
|
212 |
+
)
|
213 |
+
max_train_samples: Optional[int] = field(
|
214 |
+
default=None,
|
215 |
+
metadata={
|
216 |
+
"help": (
|
217 |
+
"For debugging purposes or quicker training, truncate the number of training examples to this value if set."
|
218 |
+
)
|
219 |
+
},
|
220 |
+
)
|
221 |
+
max_eval_samples: Optional[int] = field(
|
222 |
+
default=None,
|
223 |
+
metadata={
|
224 |
+
"help": (
|
225 |
+
"For debugging purposes or quicker training, truncate the number of evaluation examples to this value if set."
|
226 |
+
)
|
227 |
+
},
|
228 |
+
)
|
229 |
+
audio_column_name: str = field(
|
230 |
+
default="audio",
|
231 |
+
metadata={"help": "The name of the dataset column containing the audio data. Defaults to 'audio'"},
|
232 |
+
)
|
233 |
+
text_column_name: str = field(
|
234 |
+
default=None,
|
235 |
+
metadata={"help": "The name of the dataset column containing the text data in the training set."},
|
236 |
+
)
|
237 |
+
eval_text_column_name: str = field(
|
238 |
+
default="text",
|
239 |
+
metadata={"help": ("The name of the dataset column containing the text data in the evaluation set.")},
|
240 |
+
)
|
241 |
+
max_duration_in_seconds: float = field(
|
242 |
+
default=30.0,
|
243 |
+
metadata={"help": "Filter audio files that are longer than `max_duration_in_seconds` seconds"},
|
244 |
+
)
|
245 |
+
min_duration_in_seconds: float = field(
|
246 |
+
default=0.0,
|
247 |
+
metadata={"help": "Filter audio files that are shorter than `min_duration_in_seconds` seconds"},
|
248 |
+
)
|
249 |
+
max_label_length: int = field(
|
250 |
+
default=448,
|
251 |
+
metadata={"help": "Truncate transcriptions that are longer `max_label_length` tokens."},
|
252 |
+
)
|
253 |
+
pad_target_to_multiple_of: Optional[int] = field(
|
254 |
+
default=None,
|
255 |
+
metadata={
|
256 |
+
"help": (
|
257 |
+
"If set will pad the target sequence to a multiple of the provided"
|
258 |
+
" value. This is important to avoid triggering recompilations on TPU."
|
259 |
+
" If unspecified, will default to padding the targets to max length."
|
260 |
+
)
|
261 |
+
},
|
262 |
+
)
|
263 |
+
preprocessing_only: bool = field(
|
264 |
+
default=False,
|
265 |
+
metadata={
|
266 |
+
"help": (
|
267 |
+
"Whether to only do data preprocessing and skip training. This is"
|
268 |
+
" especially useful when data preprocessing errors out in distributed"
|
269 |
+
" training due to timeout. In this case, one should run the"
|
270 |
+
" preprocessing in a non-distributed setup with"
|
271 |
+
" `preprocessing_only=True` so that the cached datasets can"
|
272 |
+
" consequently be loaded in distributed training"
|
273 |
+
)
|
274 |
+
},
|
275 |
+
)
|
276 |
+
train_split_name: str = field(
|
277 |
+
default="train",
|
278 |
+
metadata={
|
279 |
+
"help": "The name of the training data set split to use (via the datasets library). Defaults to 'train'"
|
280 |
+
},
|
281 |
+
)
|
282 |
+
eval_split_name: str = field(
|
283 |
+
default="validation",
|
284 |
+
metadata={
|
285 |
+
"help": (
|
286 |
+
"The name of the evaluation data set split to use (via the datasets library). Defaults to 'validation'"
|
287 |
+
)
|
288 |
+
},
|
289 |
+
)
|
290 |
+
streaming: bool = field(
|
291 |
+
default=True,
|
292 |
+
metadata={"help": "Whether to use Datasets' streaming mode to load and pre-process the data."},
|
293 |
+
)
|
294 |
+
wer_threshold: float = field(
|
295 |
+
default=None,
|
296 |
+
metadata={
|
297 |
+
"help": "Filter training data with Whisper transcriptions that have greater than `wer_threshold` "
|
298 |
+
"WER with the normalised transcriptions. This only takes effect if training on pseudo-labels targets."
|
299 |
+
"If `--use_pseudo_labels=False`, then no WER filtering is performed, since we train directly on the text"
|
300 |
+
"transcriptions."
|
301 |
+
},
|
302 |
+
)
|
303 |
+
use_pseudo_labels: bool = field(
|
304 |
+
default=True,
|
305 |
+
metadata={
|
306 |
+
"help": "Whether or not to use pseudo-label transcriptions as the targets. If True, the pseudo-labels "
|
307 |
+
"must be in the dataset column `whisper_transcript` from the previous pseudo-labelling step. This is "
|
308 |
+
"not currently yet configurable."
|
309 |
+
},
|
310 |
+
)
|
311 |
+
timestamp_probability: float = field(
|
312 |
+
default=0.2, metadata={"help": "Probability for training on timestamped tokens if the data contains it."}
|
313 |
+
)
|
314 |
+
condition_on_prev_probability: float = field(
|
315 |
+
default=0.2, metadata={"help": "Probability for conditioning on the previous text example."}
|
316 |
+
)
|
317 |
+
return_timestamps: bool = field(
|
318 |
+
default=False, metadata={"help": "Whether or not to predict timestamps in the generation step."}
|
319 |
+
)
|
320 |
+
language: str = field(
|
321 |
+
default=None,
|
322 |
+
metadata={
|
323 |
+
"help": (
|
324 |
+
"Language for multilingual distillation. This argument should be set for multilingual distillation "
|
325 |
+
"only. For English speech recognition, it should be left as `None`."
|
326 |
+
)
|
327 |
+
},
|
328 |
+
)
|
329 |
+
task: str = field(
|
330 |
+
default="transcribe",
|
331 |
+
metadata={
|
332 |
+
"help": "Task, either `transcribe` for speech recognition or `translate` for speech translation."
|
333 |
+
"This argument should be set for multilingual distillation only. For English speech recognition, it should be left as `None`."
|
334 |
+
},
|
335 |
+
)
|
336 |
+
wandb_project: str = field(
|
337 |
+
default="distil-whisper",
|
338 |
+
metadata={"help": "The name of the wandb project."},
|
339 |
+
)
|
340 |
+
|
341 |
+
|
342 |
+
@dataclass
|
343 |
+
class DistillationTrainingArguments(Seq2SeqTrainingArguments):
|
344 |
+
freeze_encoder: Optional[bool] = field(
|
345 |
+
default=False,
|
346 |
+
metadata={
|
347 |
+
"help": (
|
348 |
+
"Whether to freeze the entire encoder model. Only recommended when the entire encoder has been "
|
349 |
+
"copied from the teacher model."
|
350 |
+
)
|
351 |
+
},
|
352 |
+
)
|
353 |
+
freeze_embed_positions: Optional[bool] = field(
|
354 |
+
default=False,
|
355 |
+
metadata={"help": "Whether to freeze the decoder embedding positions."},
|
356 |
+
)
|
357 |
+
temperature: Optional[float] = field(
|
358 |
+
default=2.0, metadata={"help": "Temperature to anneal the logits when computing the softmax."}
|
359 |
+
)
|
360 |
+
kl_weight: Optional[float] = field(
|
361 |
+
default=1.0,
|
362 |
+
metadata={
|
363 |
+
"help": (
|
364 |
+
"Weighting assigned to the MSE loss in the KD formulation. MSE loss is "
|
365 |
+
"computed between the teacher-student hidden states and attentions."
|
366 |
+
)
|
367 |
+
},
|
368 |
+
)
|
369 |
+
dtype: Optional[str] = field(
|
370 |
+
default="float32",
|
371 |
+
metadata={
|
372 |
+
"help": (
|
373 |
+
"The data type (dtype) in which to run training. One of `float32` (full-precision), "
|
374 |
+
"`float16` or `bfloat16` (both half-precision)."
|
375 |
+
)
|
376 |
+
},
|
377 |
+
)
|
378 |
+
|
379 |
+
|
380 |
+
@dataclass
|
381 |
+
class DataCollatorSpeechSeq2SeqWithPadding:
|
382 |
+
"""
|
383 |
+
Data collator that will dynamically pad the inputs received.
|
384 |
+
Args:
|
385 |
+
processor ([`Wav2Vec2Processor`])
|
386 |
+
The processor used for proccessing the data.
|
387 |
+
decoder_start_token_id (:obj: `int`)
|
388 |
+
The start-of-sequence token id of the decoder.
|
389 |
+
decoder_prev_token_id (:obj: `int`)
|
390 |
+
The start-of-prompt token id of the decoder
|
391 |
+
input_padding (:obj:`bool`, :obj:`str` or :class:`~transformers.tokenization_utils_base.PaddingStrategy`, `optional`, defaults to :obj:`True`):
|
392 |
+
Select a strategy to pad the returned input sequences (according to the model's padding side and padding index)
|
393 |
+
among:
|
394 |
+
* :obj:`True` or :obj:`'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
|
395 |
+
sequence if provided).
|
396 |
+
* :obj:`'max_length'`: Pad to a maximum length specified with the argument :obj:`max_length` or to the
|
397 |
+
maximum acceptable input length for the model if that argument is not provided.
|
398 |
+
* :obj:`False` or :obj:`'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of
|
399 |
+
different lengths).
|
400 |
+
target_padding (:obj:`bool`, :obj:`str` or :class:`~transformers.tokenization_utils_base.PaddingStrategy`, `optional`, defaults to :obj:`True`):
|
401 |
+
Select a strategy to pad the returned target sequences (according to the model's padding side and padding index).
|
402 |
+
See above for details.
|
403 |
+
max_target_length (:obj:`int`, `optional`):
|
404 |
+
Maximum length of the ``labels`` of the returned list and optionally padding length (see above).
|
405 |
+
"""
|
406 |
+
|
407 |
+
processor: Any
|
408 |
+
decoder_start_token_id: int
|
409 |
+
decoder_prev_token_id: int
|
410 |
+
input_padding: Union[bool, str] = "max_length"
|
411 |
+
target_padding: Union[bool, str] = "max_length"
|
412 |
+
max_target_length: Optional[int] = None
|
413 |
+
|
414 |
+
def __call__(self, features: List[Dict[str, Union[List[int], np.ndarray]]]) -> Dict[str, np.ndarray]:
|
415 |
+
# split inputs and labels since they have to be of different lengths and need
|
416 |
+
# different padding methods
|
417 |
+
|
418 |
+
# dataloader returns a list of features which we convert to a dict
|
419 |
+
input_features = {"input_features": [feature["input_features"] for feature in features]}
|
420 |
+
label_features = {"input_ids": [feature["labels"] for feature in features]}
|
421 |
+
|
422 |
+
# reformat list to dict and set to pytorch format
|
423 |
+
batch = self.processor.feature_extractor.pad(
|
424 |
+
input_features,
|
425 |
+
padding=self.input_padding,
|
426 |
+
return_tensors="pt",
|
427 |
+
)
|
428 |
+
|
429 |
+
labels_batch = self.processor.tokenizer.pad(
|
430 |
+
label_features,
|
431 |
+
max_length=self.max_target_length,
|
432 |
+
padding=self.target_padding,
|
433 |
+
return_tensors="pt",
|
434 |
+
)
|
435 |
+
|
436 |
+
# shift labels to the right to get decoder input ids
|
437 |
+
labels = labels_batch["input_ids"]
|
438 |
+
decoder_input_ids = labels[:, :-1]
|
439 |
+
labels = labels[:, 1:]
|
440 |
+
labels_mask = labels_batch.attention_mask[:, 1:]
|
441 |
+
|
442 |
+
# replace padding with -100 to ignore correctly when computing the loss
|
443 |
+
labels = labels.masked_fill(labels_mask.ne(1), -100)
|
444 |
+
|
445 |
+
# replace initial prompt tokens with -100 to ignore correctly when computing the loss
|
446 |
+
bos_index = torch.argmax((labels == self.decoder_start_token_id).long(), dim=1)
|
447 |
+
bos_index = torch.where(bos_index > 0, bos_index + 1, bos_index)
|
448 |
+
prompt_mask = torch.arange(labels.shape[1]) < bos_index[:, None]
|
449 |
+
labels = torch.where(prompt_mask, -100, labels)
|
450 |
+
|
451 |
+
batch["labels"] = labels
|
452 |
+
batch["decoder_input_ids"] = decoder_input_ids
|
453 |
+
|
454 |
+
return batch
|
455 |
+
|
456 |
+
|
457 |
+
def log_metric(
|
458 |
+
accelerator,
|
459 |
+
metrics: Dict,
|
460 |
+
train_time: float,
|
461 |
+
step: int,
|
462 |
+
epoch: int,
|
463 |
+
learning_rate: float = None,
|
464 |
+
prefix: str = "train",
|
465 |
+
):
|
466 |
+
"""Helper function to log all training/evaluation metrics with the correct prefixes and styling."""
|
467 |
+
log_metrics = {}
|
468 |
+
for k, v in metrics.items():
|
469 |
+
log_metrics[f"{prefix}/{k}"] = v
|
470 |
+
log_metrics[f"{prefix}/time"] = train_time
|
471 |
+
log_metrics[f"{prefix}/epoch"] = epoch
|
472 |
+
if learning_rate is not None:
|
473 |
+
log_metrics[f"{prefix}/learning_rate"] = learning_rate
|
474 |
+
accelerator.log(log_metrics, step=step)
|
475 |
+
|
476 |
+
|
477 |
+
def log_pred(
|
478 |
+
accelerator,
|
479 |
+
pred_str: List[str],
|
480 |
+
label_str: List[str],
|
481 |
+
norm_pred_str: List[str],
|
482 |
+
norm_label_str: List[str],
|
483 |
+
step: int,
|
484 |
+
prefix: str = "eval",
|
485 |
+
num_lines: int = 200000,
|
486 |
+
):
|
487 |
+
"""Helper function to log target/predicted transcriptions to weights and biases (wandb)."""
|
488 |
+
if accelerator.is_main_process:
|
489 |
+
wandb_tracker = accelerator.get_tracker("wandb")
|
490 |
+
# pretty name for current step: step 50000 -> step 50k
|
491 |
+
cur_step_pretty = f"{int(step // 1000)}k" if step > 1000 else step
|
492 |
+
prefix_pretty = prefix.replace("/", "-")
|
493 |
+
|
494 |
+
# convert str data to a wandb compatible format
|
495 |
+
str_data = [[label_str[i], pred_str[i], norm_label_str[i], norm_pred_str[i]] for i in range(len(pred_str))]
|
496 |
+
# log as a table with the appropriate headers
|
497 |
+
wandb_tracker.log_table(
|
498 |
+
table_name=f"predictions/{prefix_pretty}-step-{cur_step_pretty}",
|
499 |
+
columns=["Target", "Pred", "Norm Target", "Norm Pred"],
|
500 |
+
data=str_data[:num_lines],
|
501 |
+
step=step,
|
502 |
+
)
|
503 |
+
|
504 |
+
# log incorrect normalised predictions
|
505 |
+
str_data = np.asarray(str_data)
|
506 |
+
str_data_incorrect = str_data[str_data[:, -2] != str_data[:, -1]]
|
507 |
+
# log as a table with the appropriate headers
|
508 |
+
wandb_tracker.log_table(
|
509 |
+
table_name=f"incorrect_predictions/{prefix_pretty}-step-{cur_step_pretty}",
|
510 |
+
columns=["Target", "Pred", "Norm Target", "Norm Pred"],
|
511 |
+
data=str_data_incorrect[:num_lines],
|
512 |
+
step=step,
|
513 |
+
)
|
514 |
+
|
515 |
+
|
516 |
+
def convert_dataset_str_to_list(
|
517 |
+
dataset_names,
|
518 |
+
dataset_config_names,
|
519 |
+
splits=None,
|
520 |
+
text_column_names=None,
|
521 |
+
dataset_samples=None,
|
522 |
+
default_split="train",
|
523 |
+
) -> List[Dict]:
|
524 |
+
"""
|
525 |
+
Given three lists of dataset names, configs and splits, this function groups the corresponding
|
526 |
+
names/configs/splits. Each dataset is assigned a unique dictionary with these metadata values, and the
|
527 |
+
function returns a list of dictionaries, one for each dataset.
|
528 |
+
"""
|
529 |
+
if isinstance(dataset_names, str):
|
530 |
+
dataset_names = dataset_names.split("+")
|
531 |
+
dataset_config_names = dataset_config_names.split("+") if dataset_config_names is not None else None
|
532 |
+
splits = splits.split("+") if splits is not None else None
|
533 |
+
text_column_names = text_column_names.split("+") if text_column_names is not None else None
|
534 |
+
dataset_samples = dataset_samples.split("+") if dataset_samples is not None else None
|
535 |
+
|
536 |
+
# basic checks to ensure we've got the right number of datasets/configs/splits/columns/probs
|
537 |
+
if dataset_config_names is not None and len(dataset_names) != len(dataset_config_names):
|
538 |
+
raise ValueError(
|
539 |
+
f"Ensure one config is passed for each dataset, got {len(dataset_names)} datasets and"
|
540 |
+
f" {len(dataset_config_names)} configs."
|
541 |
+
)
|
542 |
+
|
543 |
+
if splits is not None and len(splits) != len(dataset_names):
|
544 |
+
raise ValueError(
|
545 |
+
f"Ensure one split is passed for each dataset, got {len(dataset_names)} datasets and {len(splits)} splits."
|
546 |
+
)
|
547 |
+
|
548 |
+
if text_column_names is not None and len(text_column_names) != len(dataset_names):
|
549 |
+
raise ValueError(
|
550 |
+
f"Ensure one text column name is passed for each dataset, got {len(dataset_names)} datasets and"
|
551 |
+
f" {len(text_column_names)} text column names."
|
552 |
+
)
|
553 |
+
|
554 |
+
if dataset_samples is not None:
|
555 |
+
if len(dataset_samples) != len(dataset_names):
|
556 |
+
raise ValueError(
|
557 |
+
f"Ensure one sample is passed for each dataset, got {len(dataset_names)} datasets and "
|
558 |
+
f"{len(dataset_samples)} samples."
|
559 |
+
)
|
560 |
+
dataset_samples = [float(ds_sample) for ds_sample in dataset_samples]
|
561 |
+
else:
|
562 |
+
dataset_samples = [None] * len(dataset_names)
|
563 |
+
|
564 |
+
dataset_config_names = (
|
565 |
+
dataset_config_names if dataset_config_names is not None else ["default" for _ in range(len(dataset_names))]
|
566 |
+
)
|
567 |
+
text_column_names = (
|
568 |
+
text_column_names if text_column_names is not None else ["text" for _ in range(len(dataset_names))]
|
569 |
+
)
|
570 |
+
splits = splits if splits is not None else [default_split for _ in range(len(dataset_names))]
|
571 |
+
|
572 |
+
dataset_names_dict = []
|
573 |
+
for i, ds_name in enumerate(dataset_names):
|
574 |
+
dataset_names_dict.append(
|
575 |
+
{
|
576 |
+
"name": ds_name,
|
577 |
+
"config": dataset_config_names[i],
|
578 |
+
"split": splits[i],
|
579 |
+
"text_column_name": text_column_names[i],
|
580 |
+
"samples": dataset_samples[i],
|
581 |
+
}
|
582 |
+
)
|
583 |
+
return dataset_names_dict
|
584 |
+
|
585 |
+
|
586 |
+
def load_multiple_datasets(
|
587 |
+
dataset_names: Union[List, str],
|
588 |
+
dataset_config_names: Union[List, str],
|
589 |
+
splits: Optional[Union[List, str]] = None,
|
590 |
+
text_column_names: Optional[List] = None,
|
591 |
+
sampling_rate: Optional[int] = 16000,
|
592 |
+
stopping_strategy: Optional[str] = "first_exhausted",
|
593 |
+
dataset_samples: Optional[Union[List, np.array]] = None,
|
594 |
+
streaming: Optional[bool] = True,
|
595 |
+
seed: Optional[int] = None,
|
596 |
+
accelerator: Optional[Accelerator] = None,
|
597 |
+
use_pseudo_labels: float = None,
|
598 |
+
**kwargs,
|
599 |
+
) -> IterableDataset:
|
600 |
+
dataset_names_dict = convert_dataset_str_to_list(
|
601 |
+
dataset_names, dataset_config_names, splits, text_column_names, dataset_samples
|
602 |
+
)
|
603 |
+
|
604 |
+
if dataset_samples is not None:
|
605 |
+
dataset_samples = [ds_dict["samples"] for ds_dict in dataset_names_dict]
|
606 |
+
probabilities = np.array(dataset_samples) / np.sum(dataset_samples)
|
607 |
+
else:
|
608 |
+
probabilities = None
|
609 |
+
|
610 |
+
all_datasets = []
|
611 |
+
# iterate over the datasets we want to interleave
|
612 |
+
for dataset_dict in tqdm(
|
613 |
+
dataset_names_dict,
|
614 |
+
desc="Combining datasets...",
|
615 |
+
disable=not accelerator.is_local_main_process if accelerator is not None else False,
|
616 |
+
):
|
617 |
+
dataset = load_dataset(
|
618 |
+
dataset_dict["name"],
|
619 |
+
dataset_dict["config"],
|
620 |
+
split=dataset_dict["split"],
|
621 |
+
streaming=streaming,
|
622 |
+
**kwargs,
|
623 |
+
)
|
624 |
+
# resample to specified sampling rate
|
625 |
+
dataset = dataset.cast_column("audio", datasets.features.Audio(sampling_rate))
|
626 |
+
dataset_features = dataset.features.keys()
|
627 |
+
columns_to_keep = {"audio", "text"}
|
628 |
+
|
629 |
+
if dataset_dict["text_column_name"] not in dataset_features:
|
630 |
+
raise ValueError(
|
631 |
+
f"Text column name {dataset_dict['text_column_name']} not found in dataset"
|
632 |
+
f" '{dataset_dict['name']}'. Make sure to set `--text_column_name` to the"
|
633 |
+
f" correct text column - one of {', '.join(dataset_features)}."
|
634 |
+
)
|
635 |
+
|
636 |
+
# blanket renaming of all transcription columns to text
|
637 |
+
if dataset_dict["text_column_name"] != "text":
|
638 |
+
dataset = dataset.rename_column(dataset_dict["text_column_name"], "text")
|
639 |
+
|
640 |
+
if use_pseudo_labels:
|
641 |
+
if "whisper_transcript" not in dataset_features:
|
642 |
+
raise ValueError(
|
643 |
+
f"Pseudo-label column `whisper_transcript` not found in dataset {dataset_dict['name']}. Ensure"
|
644 |
+
"pseudo-labels are present in the dataset under this column name, or train directly on the text "
|
645 |
+
"labels by setting `--use_pseudo_labels=False` and defining the appropriate `--text_column_name`."
|
646 |
+
)
|
647 |
+
columns_to_keep.add("whisper_transcript")
|
648 |
+
|
649 |
+
if "condition_on_prev" in dataset_features:
|
650 |
+
columns_to_keep.add("condition_on_prev")
|
651 |
+
|
652 |
+
dataset_features = dataset.features.keys()
|
653 |
+
dataset = dataset.remove_columns(set(dataset_features - columns_to_keep))
|
654 |
+
all_datasets.append(dataset)
|
655 |
+
|
656 |
+
if len(all_datasets) == 1:
|
657 |
+
# we have a single dataset so just return it as is
|
658 |
+
return all_datasets[0]
|
659 |
+
|
660 |
+
if streaming:
|
661 |
+
interleaved_dataset = interleave_datasets(
|
662 |
+
all_datasets,
|
663 |
+
stopping_strategy=stopping_strategy,
|
664 |
+
probabilities=probabilities,
|
665 |
+
seed=seed,
|
666 |
+
)
|
667 |
+
else:
|
668 |
+
interleaved_dataset = concatenate_datasets(all_datasets)
|
669 |
+
|
670 |
+
return interleaved_dataset
|
671 |
+
|
672 |
+
|
673 |
+
def sorted_checkpoints(output_dir=None, checkpoint_prefix="checkpoint") -> List[str]:
|
674 |
+
"""Helper function to sort saved checkpoints from oldest to newest."""
|
675 |
+
ordering_and_checkpoint_path = []
|
676 |
+
|
677 |
+
glob_checkpoints = [str(x) for x in Path(output_dir).glob(f"{checkpoint_prefix}-*") if os.path.isdir(x)]
|
678 |
+
|
679 |
+
for path in glob_checkpoints:
|
680 |
+
regex_match = re.match(f".*{checkpoint_prefix}-([0-9]+)", path)
|
681 |
+
if regex_match is not None and regex_match.groups() is not None:
|
682 |
+
ordering_and_checkpoint_path.append((int(regex_match.groups()[0]), path))
|
683 |
+
|
684 |
+
checkpoints_sorted = sorted(ordering_and_checkpoint_path)
|
685 |
+
checkpoints_sorted = [checkpoint[1] for checkpoint in checkpoints_sorted]
|
686 |
+
return checkpoints_sorted
|
687 |
+
|
688 |
+
|
689 |
+
def rotate_checkpoints(save_total_limit=None, output_dir=None, checkpoint_prefix="checkpoint") -> None:
|
690 |
+
"""Helper function to delete old checkpoints."""
|
691 |
+
if save_total_limit is None or save_total_limit <= 0:
|
692 |
+
return
|
693 |
+
# Check if we should delete older checkpoint(s)
|
694 |
+
checkpoints_sorted = sorted_checkpoints(output_dir=output_dir, checkpoint_prefix=checkpoint_prefix)
|
695 |
+
if len(checkpoints_sorted) <= save_total_limit:
|
696 |
+
return
|
697 |
+
|
698 |
+
number_of_checkpoints_to_delete = max(0, len(checkpoints_sorted) - save_total_limit)
|
699 |
+
checkpoints_to_be_deleted = checkpoints_sorted[:number_of_checkpoints_to_delete]
|
700 |
+
for checkpoint in checkpoints_to_be_deleted:
|
701 |
+
logger.info(f"Deleting older checkpoint [{checkpoint}] due to args.save_total_limit")
|
702 |
+
shutil.rmtree(checkpoint, ignore_errors=True)
|
703 |
+
|
704 |
+
|
705 |
+
_RE_CHECKPOINT = re.compile(r"^checkpoint-(\d+)-epoch-(\d+)$")
|
706 |
+
|
707 |
+
|
708 |
+
def get_last_checkpoint(folder):
|
709 |
+
content = os.listdir(folder)
|
710 |
+
checkpoints = [
|
711 |
+
path
|
712 |
+
for path in content
|
713 |
+
if _RE_CHECKPOINT.search(path) is not None and os.path.isdir(os.path.join(folder, path))
|
714 |
+
]
|
715 |
+
if len(checkpoints) == 0:
|
716 |
+
return
|
717 |
+
return os.path.join(folder, max(checkpoints, key=lambda x: int(_RE_CHECKPOINT.search(x).groups()[0])))
|
718 |
+
|
719 |
+
|
720 |
+
def get_parameter_names(model, forbidden_layer_types, forbidden_module=None):
|
721 |
+
"""
|
722 |
+
Returns the names of the model parameters that are not inside a forbidden layer or forbidden module.
|
723 |
+
Can be used to get a subset of parameter names for decay masks, or to exclude parameters from an optimiser
|
724 |
+
(e.g. if the module is frozen).
|
725 |
+
"""
|
726 |
+
result = []
|
727 |
+
for name, child in model.named_children():
|
728 |
+
result += [
|
729 |
+
f"{name}.{n}"
|
730 |
+
for n in get_parameter_names(child, forbidden_layer_types, forbidden_module)
|
731 |
+
if not (
|
732 |
+
isinstance(child, tuple(forbidden_layer_types))
|
733 |
+
or (child in tuple(forbidden_module) if forbidden_module is not None else False)
|
734 |
+
)
|
735 |
+
]
|
736 |
+
# Add model specific parameters (defined with nn.Parameter) since they are not in any child.
|
737 |
+
result += list(model._parameters.keys())
|
738 |
+
return result
|
739 |
+
|
740 |
+
|
741 |
+
def main():
|
742 |
+
# 1. Parse input arguments
|
743 |
+
# We keep distinct sets of args, for cleaner separation of model/data/training related args
|
744 |
+
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, DistillationTrainingArguments))
|
745 |
+
|
746 |
+
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
|
747 |
+
# If we pass only one argument to the script and it's the path to a json file,
|
748 |
+
# let's parse it to get our arguments.
|
749 |
+
model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
|
750 |
+
else:
|
751 |
+
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
|
752 |
+
|
753 |
+
|
754 |
+
|
755 |
+
# 2. Initialize the accelerator
|
756 |
+
# We will let the accelerator handle device placement for us in this example
|
757 |
+
# We simply have to specify the training precision and any trackers being used
|
758 |
+
# We'll use the same dtype arguments as our JAX/Flax training script and convert
|
759 |
+
# it to accelerate format
|
760 |
+
|
761 |
+
if training_args.dtype == "float16":
|
762 |
+
mixed_precision = "fp16"
|
763 |
+
teacher_dtype = torch.float16
|
764 |
+
elif training_args.dtype == "bfloat16":
|
765 |
+
mixed_precision = "bf16"
|
766 |
+
teacher_dtype = torch.bfloat16
|
767 |
+
else:
|
768 |
+
mixed_precision = "no"
|
769 |
+
teacher_dtype = torch.float32
|
770 |
+
|
771 |
+
accelerator = Accelerator(
|
772 |
+
gradient_accumulation_steps=training_args.gradient_accumulation_steps,
|
773 |
+
mixed_precision=mixed_precision,
|
774 |
+
log_with=training_args.report_to,
|
775 |
+
project_dir=training_args.output_dir,
|
776 |
+
)
|
777 |
+
|
778 |
+
accelerator.init_trackers(project_name=data_args.wandb_project)
|
779 |
+
|
780 |
+
# 3. Set-up basic logging
|
781 |
+
# Create one log on every process with the configuration for debugging
|
782 |
+
logging.basicConfig(
|
783 |
+
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
|
784 |
+
datefmt="%m/%d/%Y %H:%M:%S",
|
785 |
+
level=logging.INFO,
|
786 |
+
)
|
787 |
+
# Log a small summary on each proces
|
788 |
+
logger.warning(
|
789 |
+
f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}, "
|
790 |
+
f"distributed training: {training_args.parallel_mode.value == 'distributed'}, 16-bits training: {training_args.fp16}"
|
791 |
+
)
|
792 |
+
|
793 |
+
# Set the verbosity to info of the Transformers logger (on main process only)
|
794 |
+
if accelerator.is_local_main_process:
|
795 |
+
datasets.utils.logging.set_verbosity_warning()
|
796 |
+
transformers.utils.logging.set_verbosity_info()
|
797 |
+
else:
|
798 |
+
datasets.utils.logging.set_verbosity_error()
|
799 |
+
transformers.utils.logging.set_verbosity_error()
|
800 |
+
logger.info("Training/evaluation parameters %s", training_args)
|
801 |
+
|
802 |
+
# 4. Detecting last checkpoint and eventually continue from last checkpoint
|
803 |
+
last_checkpoint = None
|
804 |
+
if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
|
805 |
+
last_checkpoint = get_last_checkpoint(training_args.output_dir)
|
806 |
+
if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
|
807 |
+
raise ValueError(
|
808 |
+
f"Output directory ({training_args.output_dir}) already exists and is not empty. "
|
809 |
+
"Use --overwrite_output_dir to overcome."
|
810 |
+
)
|
811 |
+
elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
|
812 |
+
logger.info(
|
813 |
+
f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
|
814 |
+
"the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
|
815 |
+
)
|
816 |
+
|
817 |
+
# 5. Handle the repository creation
|
818 |
+
if accelerator.is_main_process:
|
819 |
+
if training_args.push_to_hub:
|
820 |
+
if training_args.hub_model_id is None:
|
821 |
+
repo_name = get_full_repo_name(
|
822 |
+
Path(training_args.output_dir).absolute().name,
|
823 |
+
token=training_args.hub_token,
|
824 |
+
)
|
825 |
+
else:
|
826 |
+
repo_name = training_args.hub_model_id
|
827 |
+
create_repo(repo_name, exist_ok=True, token=training_args.hub_token)
|
828 |
+
|
829 |
+
with open(os.path.join(training_args.output_dir, ".gitignore"), "w+") as gitignore:
|
830 |
+
if "wandb" not in gitignore:
|
831 |
+
gitignore.write("wandb\n")
|
832 |
+
elif training_args.output_dir is not None:
|
833 |
+
os.makedirs(training_args.output_dir, exist_ok=True)
|
834 |
+
accelerator.wait_for_everyone()
|
835 |
+
|
836 |
+
# 6. Load dataset - either streaming or non-streaming (offline)
|
837 |
+
raw_datasets = IterableDatasetDict() if data_args.streaming else DatasetDict()
|
838 |
+
|
839 |
+
# set seed for determinism
|
840 |
+
set_seed(training_args.seed)
|
841 |
+
|
842 |
+
if training_args.do_train:
|
843 |
+
raw_datasets["train"] = load_multiple_datasets(
|
844 |
+
data_args.train_dataset_name,
|
845 |
+
data_args.train_dataset_config_name,
|
846 |
+
splits=data_args.train_split_name,
|
847 |
+
text_column_names=data_args.text_column_name,
|
848 |
+
use_pseudo_labels=data_args.use_pseudo_labels,
|
849 |
+
streaming=data_args.streaming,
|
850 |
+
dataset_samples=data_args.train_dataset_samples,
|
851 |
+
seed=training_args.seed,
|
852 |
+
accelerator=accelerator,
|
853 |
+
cache_dir=data_args.dataset_cache_dir,
|
854 |
+
token=model_args.token,
|
855 |
+
)
|
856 |
+
raw_datasets_train_features = list(raw_datasets["train"].features.keys())
|
857 |
+
|
858 |
+
if training_args.do_eval:
|
859 |
+
dataset_names_dict = convert_dataset_str_to_list(
|
860 |
+
data_args.eval_dataset_name if data_args.eval_dataset_name else data_args.train_dataset_name,
|
861 |
+
(
|
862 |
+
data_args.eval_dataset_config_name
|
863 |
+
if data_args.eval_dataset_config_name
|
864 |
+
else data_args.train_dataset_config_name
|
865 |
+
),
|
866 |
+
splits=data_args.eval_split_name,
|
867 |
+
text_column_names=data_args.eval_text_column_name,
|
868 |
+
)
|
869 |
+
all_eval_splits = []
|
870 |
+
if len(dataset_names_dict) == 1:
|
871 |
+
# load a single eval set
|
872 |
+
dataset_dict = dataset_names_dict[0]
|
873 |
+
all_eval_splits.append("eval")
|
874 |
+
raw_datasets["eval"] = load_dataset(
|
875 |
+
dataset_dict["name"],
|
876 |
+
dataset_dict["config"],
|
877 |
+
split=dataset_dict["split"],
|
878 |
+
cache_dir=data_args.dataset_cache_dir,
|
879 |
+
token=model_args.token,
|
880 |
+
streaming=data_args.streaming,
|
881 |
+
)
|
882 |
+
if data_args.eval_text_column_name != "text":
|
883 |
+
raw_datasets["eval"] = raw_datasets["eval"].rename_column(data_args.eval_text_column_name, "text")
|
884 |
+
else:
|
885 |
+
# load multiple eval sets
|
886 |
+
for dataset_dict in dataset_names_dict:
|
887 |
+
if dataset_dict["name"] == "esb/diagnostic-dataset":
|
888 |
+
# for the ESB diagnostic dataset, the dataset name is effectively the config
|
889 |
+
pretty_name = f"{dataset_dict['config']}-diagnostic/{dataset_dict['split']}"
|
890 |
+
else:
|
891 |
+
pretty_name = f"{dataset_dict['name'].split('/')[-1]}/{dataset_dict['split'].replace('.', '-')}"
|
892 |
+
all_eval_splits.append(pretty_name)
|
893 |
+
raw_datasets[pretty_name] = load_dataset(
|
894 |
+
dataset_dict["name"],
|
895 |
+
dataset_dict["config"],
|
896 |
+
split=dataset_dict["split"],
|
897 |
+
cache_dir=data_args.dataset_cache_dir,
|
898 |
+
token=model_args.token,
|
899 |
+
streaming=data_args.streaming,
|
900 |
+
)
|
901 |
+
# make column names consistent (text, audio)
|
902 |
+
if dataset_dict["text_column_name"] != "text":
|
903 |
+
raw_datasets[pretty_name] = raw_datasets[pretty_name].rename_column(
|
904 |
+
dataset_dict["text_column_name"], "text"
|
905 |
+
)
|
906 |
+
raw_datasets[pretty_name] = raw_datasets[pretty_name].remove_columns(
|
907 |
+
set(raw_datasets[pretty_name].features.keys()) - {"audio", "text"}
|
908 |
+
)
|
909 |
+
|
910 |
+
if not training_args.do_train and not training_args.do_eval:
|
911 |
+
raise ValueError(
|
912 |
+
"Cannot not train and not do evaluation. At least one of training or evaluation has to be performed."
|
913 |
+
)
|
914 |
+
|
915 |
+
# 7. Load pretrained model, tokenizer, and feature extractor
|
916 |
+
config = WhisperConfig.from_pretrained(
|
917 |
+
(model_args.config_name if model_args.config_name else model_args.model_name_or_path),
|
918 |
+
cache_dir=model_args.cache_dir,
|
919 |
+
revision=model_args.model_revision,
|
920 |
+
token=model_args.token,
|
921 |
+
)
|
922 |
+
feature_extractor = WhisperFeatureExtractor.from_pretrained(
|
923 |
+
(model_args.feature_extractor_name if model_args.feature_extractor_name else model_args.model_name_or_path),
|
924 |
+
cache_dir=model_args.cache_dir,
|
925 |
+
revision=model_args.model_revision,
|
926 |
+
token=model_args.token,
|
927 |
+
)
|
928 |
+
tokenizer = WhisperTokenizerFast.from_pretrained(
|
929 |
+
(model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path),
|
930 |
+
cache_dir=model_args.cache_dir,
|
931 |
+
use_fast=model_args.use_fast_tokenizer,
|
932 |
+
revision=model_args.model_revision,
|
933 |
+
token=model_args.token,
|
934 |
+
)
|
935 |
+
|
936 |
+
# override timestamp tokens until tokenizer issues are fixed in transformers
|
937 |
+
timestamps = [AddedToken("<|%.2f|>" % (i * 0.02), lstrip=False, rstrip=False) for i in range(1500 + 1)]
|
938 |
+
tokenizer.add_tokens(timestamps)
|
939 |
+
|
940 |
+
# The teacher model can safely be cast to the dtype of training since we don't
|
941 |
+
# update the params
|
942 |
+
teacher_model = WhisperForConditionalGeneration.from_pretrained(
|
943 |
+
model_args.teacher_model_name_or_path,
|
944 |
+
cache_dir=model_args.cache_dir,
|
945 |
+
token=model_args.token,
|
946 |
+
low_cpu_mem_usage=True,
|
947 |
+
torch_dtype=teacher_dtype,
|
948 |
+
attn_implementation=model_args.attn_implementation,
|
949 |
+
)
|
950 |
+
|
951 |
+
student_model = WhisperForConditionalGeneration.from_pretrained(
|
952 |
+
model_args.model_name_or_path,
|
953 |
+
config=config,
|
954 |
+
cache_dir=model_args.cache_dir,
|
955 |
+
revision=model_args.model_revision,
|
956 |
+
subfolder=model_args.subfolder,
|
957 |
+
token=model_args.token,
|
958 |
+
low_cpu_mem_usage=True,
|
959 |
+
attn_implementation=model_args.attn_implementation,
|
960 |
+
)
|
961 |
+
|
962 |
+
if student_model.config.decoder_start_token_id is None or teacher_model.config.decoder_start_token_id is None:
|
963 |
+
raise ValueError(
|
964 |
+
f"Make sure that `config.decoder_start_token_id` is correctly defined for both the "
|
965 |
+
f"student and teacher model. Got {student_model.config.decoder_start_token_id} for the "
|
966 |
+
f"student and {teacher_model.config.decoder_start_token_id} for the teacher."
|
967 |
+
)
|
968 |
+
|
969 |
+
# enable gradient checkpointing if necessary
|
970 |
+
if training_args.gradient_checkpointing:
|
971 |
+
student_model.gradient_checkpointing_enable()
|
972 |
+
|
973 |
+
def set_trainable_parameters(module, requires_grad=False):
|
974 |
+
for param in module.parameters():
|
975 |
+
param.requires_grad = requires_grad
|
976 |
+
module._requires_grad = requires_grad
|
977 |
+
|
978 |
+
# freeze student encoder if necessary
|
979 |
+
if training_args.freeze_encoder:
|
980 |
+
set_trainable_parameters(student_model.model.encoder, requires_grad=False)
|
981 |
+
student_model.model.encoder.gradient_checkpointing = False
|
982 |
+
|
983 |
+
if training_args.freeze_embed_positions:
|
984 |
+
# set_trainable_parameters(student_model.model.decoder.embed_tokens, requires_grad=False)
|
985 |
+
set_trainable_parameters(student_model.model.decoder.embed_positions, requires_grad=False)
|
986 |
+
if student_model.model.decoder.gradient_checkpointing:
|
987 |
+
logger.info(
|
988 |
+
"Disabling gradient checkpointing in the decoder since it's incompatible with `freeze_embed_positions`."
|
989 |
+
)
|
990 |
+
|
991 |
+
share_hidden_states = training_args.freeze_encoder and student_model.config.d_model == teacher_model.config.d_model
|
992 |
+
if share_hidden_states:
|
993 |
+
# tie the weights for the teacher encoder if we're freezing the student and it's the same as the teacher
|
994 |
+
teacher_model.model.encoder = student_model.model.encoder
|
995 |
+
|
996 |
+
if hasattr(teacher_model.generation_config, "is_multilingual") and teacher_model.generation_config.is_multilingual:
|
997 |
+
# We need to set the language and task ids for previously multilingual checkpoints
|
998 |
+
is_multilingual = True
|
999 |
+
tokenizer.set_prefix_tokens(language=data_args.language, task=data_args.task, predict_timestamps=False)
|
1000 |
+
student_model.generation_config.update(
|
1001 |
+
**{
|
1002 |
+
"language": data_args.language,
|
1003 |
+
"task": data_args.task,
|
1004 |
+
}
|
1005 |
+
)
|
1006 |
+
elif data_args.language is not None:
|
1007 |
+
raise ValueError(
|
1008 |
+
"Setting language token for an English-only checkpoint is not permitted. The language argument should "
|
1009 |
+
"only be set for multilingual checkpoints."
|
1010 |
+
)
|
1011 |
+
else:
|
1012 |
+
is_multilingual = False
|
1013 |
+
|
1014 |
+
# 8. Create a single speech processor - make sure all processes wait until data is saved
|
1015 |
+
if accelerator.is_main_process:
|
1016 |
+
feature_extractor.save_pretrained(training_args.output_dir)
|
1017 |
+
tokenizer.save_pretrained(training_args.output_dir)
|
1018 |
+
# save the config and generation config as well
|
1019 |
+
config.save_pretrained(training_args.output_dir)
|
1020 |
+
student_model.generation_config.save_pretrained(training_args.output_dir)
|
1021 |
+
|
1022 |
+
accelerator.wait_for_everyone()
|
1023 |
+
processor = WhisperProcessor.from_pretrained(training_args.output_dir)
|
1024 |
+
|
1025 |
+
# 9. Resample speech dataset: `datasets` takes care of automatically loading and resampling the audio,
|
1026 |
+
# so we just need to set the correct target sampling rate.
|
1027 |
+
sampling_rate = feature_extractor.sampling_rate
|
1028 |
+
raw_datasets = raw_datasets.cast_column(
|
1029 |
+
data_args.audio_column_name,
|
1030 |
+
datasets.features.Audio(sampling_rate=sampling_rate),
|
1031 |
+
)
|
1032 |
+
|
1033 |
+
# 10. Preprocessing the datasets: we need to read the audio files as arrays and tokenize the targets.
|
1034 |
+
# 10.1: Define the pre-processing constants
|
1035 |
+
max_input_length = int(data_args.max_duration_in_seconds * sampling_rate)
|
1036 |
+
min_input_length = int(data_args.min_duration_in_seconds * sampling_rate)
|
1037 |
+
max_label_length = (
|
1038 |
+
data_args.max_label_length if data_args.max_label_length is not None else student_model.config.max_length
|
1039 |
+
)
|
1040 |
+
|
1041 |
+
timestamp_probability = data_args.timestamp_probability
|
1042 |
+
condition_on_prev_probability = data_args.condition_on_prev_probability
|
1043 |
+
return_timestamps = data_args.return_timestamps if timestamp_probability > 0 else False
|
1044 |
+
|
1045 |
+
timestamp_ids = tokenizer.timestamp_ids()
|
1046 |
+
timestamp_begin = tokenizer.all_special_ids[-1]
|
1047 |
+
timestamp_position = 3 if is_multilingual else 1
|
1048 |
+
|
1049 |
+
decoder_start_token_id = student_model.config.decoder_start_token_id # <|startoftranscript|>
|
1050 |
+
decoder_prev_token_id = tokenizer.all_special_ids[-3] # <|startofprev|>
|
1051 |
+
prompt_cutoff_length = max_label_length // 2
|
1052 |
+
|
1053 |
+
num_workers = data_args.preprocessing_num_workers
|
1054 |
+
dataloader_num_workers = training_args.dataloader_num_workers
|
1055 |
+
prefetch_factor = training_args.dataloader_prefetch_factor
|
1056 |
+
|
1057 |
+
metric = evaluate.load("wer")
|
1058 |
+
normalizer = (
|
1059 |
+
BasicTextNormalizer()
|
1060 |
+
if data_args.language is not None
|
1061 |
+
else EnglishTextNormalizer(tokenizer.english_spelling_normalizer)
|
1062 |
+
)
|
1063 |
+
wer_threshold = data_args.wer_threshold
|
1064 |
+
use_pseudo_labels = data_args.use_pseudo_labels
|
1065 |
+
train_text_column_name = "whisper_transcript" if use_pseudo_labels else "text"
|
1066 |
+
|
1067 |
+
# 10.2: filter based on maximum number of training/evaluation samples
|
1068 |
+
if training_args.do_train and data_args.max_train_samples is not None:
|
1069 |
+
raw_datasets["train"] = (
|
1070 |
+
raw_datasets["train"].take(data_args.max_train_samples)
|
1071 |
+
if data_args.streaming
|
1072 |
+
else raw_datasets["train"].select(range(data_args.max_train_samples))
|
1073 |
+
)
|
1074 |
+
|
1075 |
+
if training_args.do_eval and data_args.max_eval_samples is not None:
|
1076 |
+
for eval_split in all_eval_splits:
|
1077 |
+
raw_datasets[eval_split] = (
|
1078 |
+
raw_datasets[eval_split].take(data_args.max_eval_samples)
|
1079 |
+
if data_args.streaming
|
1080 |
+
else raw_datasets[eval_split].select(range(data_args.max_eval_samples))
|
1081 |
+
)
|
1082 |
+
|
1083 |
+
# 10.3: filter training data based on WER threshold -> this is KEY to good distillation performance
|
1084 |
+
def is_wer_in_range(ground_truth, whisper_transcript):
|
1085 |
+
norm_ground_truth = normalizer(ground_truth)
|
1086 |
+
if whisper_transcript is not None and whisper_transcript.upper() == whisper_transcript:
|
1087 |
+
# filter entirely upper-case transcriptions: these are erroneous generations from large-v3
|
1088 |
+
return False
|
1089 |
+
elif len(norm_ground_truth) > 0 and whisper_transcript is not None:
|
1090 |
+
norm_whisper_transcript = normalizer(whisper_transcript)
|
1091 |
+
wer = 100 * metric.compute(predictions=[norm_whisper_transcript], references=[norm_ground_truth])
|
1092 |
+
return wer < wer_threshold
|
1093 |
+
else:
|
1094 |
+
# filter automatically since we can't know the WER
|
1095 |
+
return False
|
1096 |
+
|
1097 |
+
filter_by_wer_threshold = partial(
|
1098 |
+
raw_datasets["train"].filter,
|
1099 |
+
function=is_wer_in_range,
|
1100 |
+
input_columns=["text", "whisper_transcript"],
|
1101 |
+
)
|
1102 |
+
|
1103 |
+
if wer_threshold is not None and use_pseudo_labels:
|
1104 |
+
with accelerator.main_process_first():
|
1105 |
+
raw_datasets["train"] = (
|
1106 |
+
filter_by_wer_threshold(num_proc=num_workers, desc="filtering train dataset by wer")
|
1107 |
+
if not data_args.streaming
|
1108 |
+
else filter_by_wer_threshold()
|
1109 |
+
)
|
1110 |
+
|
1111 |
+
# 10.4: pre-process training/evaluation datasets
|
1112 |
+
def prepare_train_dataset(batch):
|
1113 |
+
"""
|
1114 |
+
Pre-process the raw dataset in a three stage process:
|
1115 |
+
1. Convert the audio arrays to log-mel spectrogram inputs
|
1116 |
+
2. Possibly filter the timestamp tokens from the token ids (depending on the timestamp probability)
|
1117 |
+
3. Possibly add prompt tokens if conditioning on previous text (depending on the conditioning probability)
|
1118 |
+
"""
|
1119 |
+
# process audio input
|
1120 |
+
audio = [sample["array"] for sample in batch["audio"]]
|
1121 |
+
inputs = feature_extractor(audio, sampling_rate=sampling_rate)
|
1122 |
+
batch["input_features"] = inputs.input_features
|
1123 |
+
batch["input_length"] = [len(sample) for sample in audio]
|
1124 |
+
|
1125 |
+
# process text targets - for training these are the Whisper-generated pseudo-labels
|
1126 |
+
input_str_batched = batch[train_text_column_name]
|
1127 |
+
condition_on_prev_batched = batch.get("condition_on_prev", len(input_str_batched) * [None])
|
1128 |
+
|
1129 |
+
all_token_ids = []
|
1130 |
+
all_token_ids_unprompted = []
|
1131 |
+
for prev_ids, input_str in zip(condition_on_prev_batched, input_str_batched):
|
1132 |
+
token_ids = tokenizer(input_str, add_special_tokens=not use_pseudo_labels).input_ids
|
1133 |
+
|
1134 |
+
# check whether we have timestamps in the PLs and filter if required
|
1135 |
+
has_timestamps = len(set(token_ids) & set(timestamp_ids)) > 0
|
1136 |
+
if has_timestamps:
|
1137 |
+
# sample from binomial distribution to get probability of training on timestamps
|
1138 |
+
predict_timestamps = bool(np.random.binomial(1, timestamp_probability))
|
1139 |
+
if not predict_timestamps:
|
1140 |
+
# filter timestamps and insert the <|notimestamps|> task token
|
1141 |
+
token_ids = [token for token in token_ids if token < timestamp_begin]
|
1142 |
+
token_ids.insert(timestamp_position, timestamp_begin)
|
1143 |
+
|
1144 |
+
all_token_ids_unprompted.append(token_ids)
|
1145 |
+
# check whether to condition on previous text - we do this with probability condition_on_prev_probability
|
1146 |
+
condition_on_prev = bool(np.random.binomial(1, condition_on_prev_probability))
|
1147 |
+
if not condition_on_prev:
|
1148 |
+
prev_ids = None
|
1149 |
+
elif "condition_on_prev" not in batch and len(all_token_ids_unprompted) > 1:
|
1150 |
+
# prompt ids are the penultimate token ids in the batch
|
1151 |
+
prev_ids = all_token_ids_unprompted[-2]
|
1152 |
+
|
1153 |
+
if prev_ids is not None:
|
1154 |
+
if has_timestamps and not predict_timestamps:
|
1155 |
+
# filter timestamp ids from prompt when not predicting timestamps
|
1156 |
+
prev_ids = [token for token in prev_ids if token < timestamp_begin]
|
1157 |
+
|
1158 |
+
# check that the length of the prompt does not exceed more than half the max label length (224)
|
1159 |
+
if len(prev_ids) > prompt_cutoff_length:
|
1160 |
+
prev_ids = prev_ids[-prompt_cutoff_length + 1 :]
|
1161 |
+
prev_ids = [decoder_prev_token_id] + prev_ids
|
1162 |
+
|
1163 |
+
# and that the total length of the labels does not exceed the max label length (448)
|
1164 |
+
if len(prev_ids + token_ids) > max_label_length:
|
1165 |
+
trim_length = len(prev_ids + token_ids) - max_label_length + 1
|
1166 |
+
prev_ids = prev_ids[trim_length:]
|
1167 |
+
prev_ids = [decoder_prev_token_id] + prev_ids
|
1168 |
+
|
1169 |
+
token_ids = prev_ids + token_ids
|
1170 |
+
|
1171 |
+
all_token_ids.append(token_ids)
|
1172 |
+
|
1173 |
+
batch["labels"] = all_token_ids
|
1174 |
+
return batch
|
1175 |
+
|
1176 |
+
def prepare_eval_dataset(batch):
|
1177 |
+
# process audio input
|
1178 |
+
sample = batch["audio"]
|
1179 |
+
inputs = feature_extractor(sample["array"], sampling_rate=sample["sampling_rate"])
|
1180 |
+
batch["input_features"] = inputs.input_features[0]
|
1181 |
+
batch["input_length"] = len(sample["array"])
|
1182 |
+
|
1183 |
+
# process targets - for evaluation these are the ground-truth transcriptions
|
1184 |
+
input_str = batch["text"]
|
1185 |
+
batch["labels"] = tokenizer(input_str).input_ids
|
1186 |
+
return batch
|
1187 |
+
|
1188 |
+
vectorized_datasets = IterableDatasetDict() if data_args.streaming else DatasetDict()
|
1189 |
+
if training_args.do_train:
|
1190 |
+
# with streaming mode we can only have 1 worker, whereas with non-streaming
|
1191 |
+
# we can use `num_workers` (which is much faster)
|
1192 |
+
# We gate the pre-processing function accordingly
|
1193 |
+
map_fn_train = partial(
|
1194 |
+
raw_datasets["train"].map,
|
1195 |
+
function=prepare_train_dataset,
|
1196 |
+
remove_columns=raw_datasets_train_features,
|
1197 |
+
batched=True,
|
1198 |
+
batch_size=data_args.preprocessing_batch_size,
|
1199 |
+
)
|
1200 |
+
with accelerator.main_process_first():
|
1201 |
+
vectorized_datasets["train"] = (
|
1202 |
+
map_fn_train(num_proc=num_workers, desc="preprocess train dataset")
|
1203 |
+
if not data_args.streaming
|
1204 |
+
else map_fn_train()
|
1205 |
+
)
|
1206 |
+
if training_args.do_eval:
|
1207 |
+
for eval_split in all_eval_splits:
|
1208 |
+
raw_datasets_eval_features = list(raw_datasets[eval_split].features.keys())
|
1209 |
+
map_fn_eval = partial(
|
1210 |
+
raw_datasets[eval_split].map, function=prepare_eval_dataset, remove_columns=raw_datasets_eval_features
|
1211 |
+
)
|
1212 |
+
with accelerator.main_process_first():
|
1213 |
+
vectorized_datasets[eval_split] = (
|
1214 |
+
map_fn_eval(num_proc=num_workers, desc="preprocess eval dataset")
|
1215 |
+
if not data_args.streaming
|
1216 |
+
else map_fn_eval()
|
1217 |
+
)
|
1218 |
+
|
1219 |
+
# 10.5: Filter training data with inputs longer than `max_input_length`
|
1220 |
+
def is_audio_in_length_range(length):
|
1221 |
+
return min_input_length < length < max_input_length
|
1222 |
+
|
1223 |
+
filter_by_audio_fn = partial(
|
1224 |
+
vectorized_datasets.filter, function=is_audio_in_length_range, input_columns=["input_length"]
|
1225 |
+
)
|
1226 |
+
with accelerator.main_process_first():
|
1227 |
+
vectorized_datasets = (
|
1228 |
+
filter_by_audio_fn(num_proc=num_workers, desc="filtering train dataset by audio length")
|
1229 |
+
if not data_args.streaming
|
1230 |
+
else filter_by_audio_fn()
|
1231 |
+
)
|
1232 |
+
|
1233 |
+
# 10.6: Filter training data with labels longer than `max_label_length`
|
1234 |
+
def is_labels_in_length_range(labels):
|
1235 |
+
return 0 < len(labels) <= max_label_length
|
1236 |
+
|
1237 |
+
filter_by_labels_fn = partial(
|
1238 |
+
vectorized_datasets.filter, function=is_labels_in_length_range, input_columns=["labels"]
|
1239 |
+
)
|
1240 |
+
with accelerator.main_process_first():
|
1241 |
+
vectorized_datasets = (
|
1242 |
+
filter_by_labels_fn(num_proc=num_workers, desc="filtering train dataset")
|
1243 |
+
if not data_args.streaming
|
1244 |
+
else filter_by_labels_fn()
|
1245 |
+
)
|
1246 |
+
|
1247 |
+
# Pre-processing complete!
|
1248 |
+
# For large datasets it is advised to run the preprocessing on a
|
1249 |
+
# single machine first with `--preprocessing_only` since there will mostly likely
|
1250 |
+
# be a timeout when running the script in distributed mode.
|
1251 |
+
# In a second step, `--preprocessing_only` can then be set to `False` to load the
|
1252 |
+
# cached dataset
|
1253 |
+
if data_args.preprocessing_only:
|
1254 |
+
if data_args.streaming:
|
1255 |
+
raise ValueError(
|
1256 |
+
"When using streaming mode, dataset pre-processing is performed on the fly, hence there is no notion"
|
1257 |
+
"of a cached pre-processed dataset. Remove the argument `--preprocessing_only` to run pre-processing "
|
1258 |
+
"on the fly with streaming mode."
|
1259 |
+
)
|
1260 |
+
cache = {k: v.cache_files for k, v in vectorized_datasets.items()}
|
1261 |
+
logger.info(f"Data preprocessing finished. Files cached at {cache}.")
|
1262 |
+
return
|
1263 |
+
|
1264 |
+
# 11. Define Evaluation Metrics
|
1265 |
+
def compute_metrics(preds, labels):
|
1266 |
+
# replace padded labels by the padding token
|
1267 |
+
for idx in range(len(labels)):
|
1268 |
+
labels[idx][labels[idx] == -100] = tokenizer.pad_token_id
|
1269 |
+
|
1270 |
+
pred_str = tokenizer.batch_decode(preds, skip_special_tokens=True, decode_with_timestamps=return_timestamps)
|
1271 |
+
# we do not want to group tokens when computing the metrics
|
1272 |
+
label_str = tokenizer.batch_decode(labels, skip_special_tokens=True)
|
1273 |
+
wer_ortho = 100 * metric.compute(predictions=pred_str, references=label_str)
|
1274 |
+
|
1275 |
+
# normalize everything and re-compute the WER
|
1276 |
+
norm_pred_str = [normalizer(pred) for pred in pred_str]
|
1277 |
+
norm_label_str = [normalizer(label) for label in label_str]
|
1278 |
+
# for logging, we need the pred/labels to match the norm_pred/norm_labels, so discard any filtered samples here
|
1279 |
+
pred_str = [pred_str[i] for i in range(len(norm_pred_str)) if len(norm_label_str[i]) > 0]
|
1280 |
+
label_str = [label_str[i] for i in range(len(norm_label_str)) if len(norm_label_str[i]) > 0]
|
1281 |
+
# filtering step to only evaluate the samples that correspond to non-zero normalized references:
|
1282 |
+
norm_pred_str = [norm_pred_str[i] for i in range(len(norm_pred_str)) if len(norm_label_str[i]) > 0]
|
1283 |
+
norm_label_str = [norm_label_str[i] for i in range(len(norm_label_str)) if len(norm_label_str[i]) > 0]
|
1284 |
+
|
1285 |
+
wer = 100 * metric.compute(predictions=norm_pred_str, references=norm_label_str)
|
1286 |
+
return {"wer": wer, "wer_ortho": wer_ortho}, pred_str, label_str, norm_pred_str, norm_label_str
|
1287 |
+
|
1288 |
+
# 12. Define Training Schedule
|
1289 |
+
# Store some constants
|
1290 |
+
per_device_train_batch_size = int(training_args.per_device_train_batch_size)
|
1291 |
+
train_batch_size = per_device_train_batch_size * accelerator.num_processes
|
1292 |
+
gradient_accumulation_steps = int(training_args.gradient_accumulation_steps)
|
1293 |
+
per_device_eval_batch_size = int(training_args.per_device_eval_batch_size)
|
1294 |
+
|
1295 |
+
if not data_args.streaming and training_args.max_steps < 0:
|
1296 |
+
num_epochs = int(training_args.num_train_epochs)
|
1297 |
+
steps_per_epoch = len(vectorized_datasets["train"]) // (train_batch_size * gradient_accumulation_steps)
|
1298 |
+
total_train_steps = steps_per_epoch * num_epochs
|
1299 |
+
elif training_args.max_steps > 0:
|
1300 |
+
logger.info("max_steps is given, it will override any value given in num_train_epochs")
|
1301 |
+
total_train_steps = int(training_args.max_steps)
|
1302 |
+
if not data_args.streaming:
|
1303 |
+
steps_per_epoch = len(vectorized_datasets["train"]) // (train_batch_size * gradient_accumulation_steps)
|
1304 |
+
num_epochs = int(np.ceil(total_train_steps / steps_per_epoch))
|
1305 |
+
else:
|
1306 |
+
# Setting a very large number of epochs so we go as many times as necessary over the iterator.
|
1307 |
+
num_epochs = sys.maxsize
|
1308 |
+
steps_per_epoch = total_train_steps
|
1309 |
+
else:
|
1310 |
+
raise ValueError("max_steps must be specified when training with a streaming (iterable) dataset")
|
1311 |
+
|
1312 |
+
if training_args.eval_steps is None:
|
1313 |
+
logger.info(
|
1314 |
+
f"eval_steps is not set, evaluating at the end of {'each epoch' if not data_args.streaming else 'training'}"
|
1315 |
+
)
|
1316 |
+
eval_steps = steps_per_epoch
|
1317 |
+
else:
|
1318 |
+
eval_steps = training_args.eval_steps
|
1319 |
+
|
1320 |
+
# 13. Define optimizer, LR scheduler, collator
|
1321 |
+
decay_parameters = get_parameter_names(
|
1322 |
+
student_model,
|
1323 |
+
[nn.LayerNorm],
|
1324 |
+
forbidden_module=[student_model.model.encoder] if training_args.freeze_encoder else None,
|
1325 |
+
)
|
1326 |
+
decay_parameters = [name for name in decay_parameters if "bias" not in name]
|
1327 |
+
optimizer_grouped_parameters = [
|
1328 |
+
{
|
1329 |
+
"params": [param for name, param in student_model.named_parameters() if name in decay_parameters],
|
1330 |
+
"weight_decay": training_args.weight_decay,
|
1331 |
+
},
|
1332 |
+
{
|
1333 |
+
"params": [param for name, param in student_model.named_parameters() if name not in decay_parameters],
|
1334 |
+
"weight_decay": 0.0,
|
1335 |
+
},
|
1336 |
+
]
|
1337 |
+
optimizer = torch.optim.AdamW(
|
1338 |
+
params=optimizer_grouped_parameters,
|
1339 |
+
lr=training_args.learning_rate,
|
1340 |
+
betas=(training_args.adam_beta1, training_args.adam_beta2),
|
1341 |
+
eps=training_args.adam_epsilon,
|
1342 |
+
)
|
1343 |
+
|
1344 |
+
# LR scheduler gets stepped by `num_processes` each time -> account for this in warmup / total steps
|
1345 |
+
lr_scheduler = get_scheduler(
|
1346 |
+
name=training_args.lr_scheduler_type,
|
1347 |
+
optimizer=optimizer,
|
1348 |
+
num_warmup_steps=training_args.warmup_steps * accelerator.num_processes,
|
1349 |
+
num_training_steps=total_train_steps * accelerator.num_processes,
|
1350 |
+
)
|
1351 |
+
|
1352 |
+
data_collator = DataCollatorSpeechSeq2SeqWithPadding(
|
1353 |
+
processor=processor,
|
1354 |
+
decoder_start_token_id=decoder_start_token_id,
|
1355 |
+
decoder_prev_token_id=decoder_prev_token_id,
|
1356 |
+
input_padding="longest",
|
1357 |
+
target_padding="max_length",
|
1358 |
+
max_target_length=max_label_length,
|
1359 |
+
)
|
1360 |
+
|
1361 |
+
# 14. Define generation arguments - we need to do this before we wrap the models in DDP
|
1362 |
+
# so that we can still access the configs
|
1363 |
+
num_beams = (
|
1364 |
+
training_args.generation_num_beams
|
1365 |
+
if training_args.generation_num_beams is not None
|
1366 |
+
else getattr(student_model.generation_config, "num_beams", 1)
|
1367 |
+
)
|
1368 |
+
|
1369 |
+
gen_kwargs = {
|
1370 |
+
"max_length": max_label_length,
|
1371 |
+
"num_beams": num_beams,
|
1372 |
+
"return_timestamps": return_timestamps,
|
1373 |
+
}
|
1374 |
+
if is_multilingual:
|
1375 |
+
# forcing the language and task tokens helps multilingual models in their generations
|
1376 |
+
gen_kwargs.update(
|
1377 |
+
{
|
1378 |
+
"language": data_args.language,
|
1379 |
+
"task": data_args.task,
|
1380 |
+
}
|
1381 |
+
)
|
1382 |
+
|
1383 |
+
# 15. Prepare everything with accelerate
|
1384 |
+
student_model, teacher_model, optimizer, lr_scheduler = accelerator.prepare(
|
1385 |
+
student_model, teacher_model, optimizer, lr_scheduler
|
1386 |
+
)
|
1387 |
+
|
1388 |
+
def kl_divergence(target_distribution, log_predicted_distribution, labels):
|
1389 |
+
kl_loss = nn.KLDivLoss(reduction="none")
|
1390 |
+
divergence = kl_loss(log_predicted_distribution, target_distribution)
|
1391 |
+
# ignore padded tokens from divergence, i.e. where labels are not set to -100
|
1392 |
+
padding_mask = labels >= 0
|
1393 |
+
padding_mask = padding_mask.unsqueeze(-1)
|
1394 |
+
divergence = divergence * padding_mask
|
1395 |
+
# take the average over the mini-batch
|
1396 |
+
divergence = divergence.sum() / padding_mask.sum()
|
1397 |
+
return divergence
|
1398 |
+
|
1399 |
+
# Define gradient update step fn
|
1400 |
+
def train_step(
|
1401 |
+
batch,
|
1402 |
+
temperature=2.0,
|
1403 |
+
):
|
1404 |
+
student_model.train()
|
1405 |
+
teacher_model.eval()
|
1406 |
+
|
1407 |
+
student_outputs = student_model(**batch)
|
1408 |
+
with torch.no_grad():
|
1409 |
+
if share_hidden_states:
|
1410 |
+
# if the student and teacher share the same frozen encoder then we don't have to recompute the
|
1411 |
+
# encoder hidden-states for the teacher model, we can just re-use from the student
|
1412 |
+
encoder_outputs = BaseModelOutput(student_outputs.encoder_last_hidden_state.to(dtype=teacher_dtype))
|
1413 |
+
teacher_outputs = teacher_model(encoder_outputs=encoder_outputs, labels=batch["labels"])
|
1414 |
+
else:
|
1415 |
+
# do the full forward pass for the teacher model (encoder + decoder)
|
1416 |
+
teacher_outputs = teacher_model(**batch)
|
1417 |
+
|
1418 |
+
# CE (data) loss
|
1419 |
+
ce_loss = student_outputs.loss
|
1420 |
+
# rescale distribution by temperature to ensure gradients scale correctly
|
1421 |
+
teacher_distribution = nn.functional.softmax(teacher_outputs.logits / temperature, dim=-1)
|
1422 |
+
# log softmax of student predictions for numerical stability
|
1423 |
+
student_distribution = nn.functional.log_softmax(student_outputs.logits / temperature, dim=-1)
|
1424 |
+
# KL-divergence loss (scaled by temperature)
|
1425 |
+
kl_loss = kl_divergence(teacher_distribution, student_distribution, batch["labels"]) * temperature**2
|
1426 |
+
|
1427 |
+
# use Distil-Whisper formulation (fix weight of CE loss and tune KL weight)
|
1428 |
+
loss = 0.8 * ce_loss + training_args.kl_weight * kl_loss
|
1429 |
+
metrics = {"loss": loss, "ce_loss": ce_loss, "kl_loss": kl_loss}
|
1430 |
+
return loss, metrics
|
1431 |
+
|
1432 |
+
# Define eval fn
|
1433 |
+
def eval_step(batch):
|
1434 |
+
student_model.eval()
|
1435 |
+
teacher_model.eval()
|
1436 |
+
|
1437 |
+
with torch.no_grad():
|
1438 |
+
student_outputs = student_model(**batch)
|
1439 |
+
if share_hidden_states:
|
1440 |
+
encoder_outputs = BaseModelOutput(student_outputs.encoder_last_hidden_state.to(dtype=teacher_dtype))
|
1441 |
+
teacher_outputs = teacher_model(encoder_outputs=encoder_outputs, labels=batch["labels"])
|
1442 |
+
else:
|
1443 |
+
teacher_outputs = teacher_model(**batch)
|
1444 |
+
|
1445 |
+
# CE (data) loss
|
1446 |
+
ce_loss = student_outputs.loss
|
1447 |
+
|
1448 |
+
# log softmax / softmax for numerical stability
|
1449 |
+
student_distribution = nn.functional.log_softmax(student_outputs.logits, dim=-1)
|
1450 |
+
teacher_distribution = nn.functional.softmax(teacher_outputs.logits, dim=-1)
|
1451 |
+
# temperature is always 1 for eval
|
1452 |
+
kl_loss = kl_divergence(teacher_distribution, student_distribution, batch["labels"])
|
1453 |
+
|
1454 |
+
# use Distil-Whisper formulation (fix weight of CE loss and tune KL weight)
|
1455 |
+
loss = 0.8 * ce_loss + training_args.kl_weight * kl_loss
|
1456 |
+
metrics = {"loss": loss, "ce_loss": ce_loss, "kl_loss": kl_loss}
|
1457 |
+
return metrics
|
1458 |
+
|
1459 |
+
def generate_step(batch):
|
1460 |
+
student_model.eval()
|
1461 |
+
output_ids = accelerator.unwrap_model(student_model).generate(batch["input_features"], **gen_kwargs)
|
1462 |
+
output_ids = accelerator.pad_across_processes(output_ids, dim=1, pad_index=tokenizer.pad_token_id)
|
1463 |
+
return output_ids
|
1464 |
+
|
1465 |
+
logger.info("***** Running training *****")
|
1466 |
+
logger.info(f" Num examples = {total_train_steps * train_batch_size * gradient_accumulation_steps}")
|
1467 |
+
if not data_args.streaming:
|
1468 |
+
logger.info(f" Num epochs = {num_epochs}")
|
1469 |
+
logger.info(" Instantaneous batch size per device =" f" {training_args.per_device_train_batch_size}")
|
1470 |
+
logger.info(" Gradient accumulation steps =" f" {gradient_accumulation_steps}")
|
1471 |
+
logger.info(
|
1472 |
+
f" Total train batch size (w. parallel & distributed) = {train_batch_size * gradient_accumulation_steps}"
|
1473 |
+
)
|
1474 |
+
logger.info(f" Total optimization steps = {total_train_steps}")
|
1475 |
+
|
1476 |
+
# ======================== Training ================================
|
1477 |
+
train_time = 0
|
1478 |
+
train_start = time.time()
|
1479 |
+
steps_trained_progress_bar = tqdm(
|
1480 |
+
range(total_train_steps), desc="Train steps ... ", position=0, disable=not accelerator.is_local_main_process
|
1481 |
+
)
|
1482 |
+
continue_training = True
|
1483 |
+
epochs_trained = 0
|
1484 |
+
cur_step = 0
|
1485 |
+
|
1486 |
+
checkpoint = None
|
1487 |
+
if training_args.resume_from_checkpoint is not None:
|
1488 |
+
checkpoint = training_args.resume_from_checkpoint
|
1489 |
+
elif last_checkpoint is not None:
|
1490 |
+
checkpoint = last_checkpoint
|
1491 |
+
|
1492 |
+
if checkpoint is not None:
|
1493 |
+
accelerator.load_state(checkpoint)
|
1494 |
+
# Find num steps and epoch from saved state string pattern
|
1495 |
+
pattern = r"checkpoint-(\d+)-epoch-(\d+)"
|
1496 |
+
match = re.search(pattern, checkpoint)
|
1497 |
+
cur_step = int(match.group(1))
|
1498 |
+
epochs_trained = int(match.group(2))
|
1499 |
+
|
1500 |
+
logger.info(" Continuing training from checkpoint, will skip to saved global_step")
|
1501 |
+
logger.info(f" Continuing training from epoch {epochs_trained}")
|
1502 |
+
logger.info(f" Continuing training from global step {cur_step}")
|
1503 |
+
|
1504 |
+
steps_trained_progress_bar.update(cur_step)
|
1505 |
+
|
1506 |
+
for epoch in range(0, epochs_trained):
|
1507 |
+
vectorized_datasets["train"] = vectorized_datasets["train"].shuffle(training_args.seed)
|
1508 |
+
|
1509 |
+
if not data_args.streaming and training_args.max_steps < 0:
|
1510 |
+
# we know exactly the number of steps per epoch, so can skip through the required number of batches
|
1511 |
+
resume_step = (cur_step - epochs_trained * steps_per_epoch) * gradient_accumulation_steps
|
1512 |
+
else:
|
1513 |
+
# Currently we don't know how many steps we've taken in the current epoch
|
1514 |
+
# So we just shuffle the dataset one extra time and start from a fresh epoch
|
1515 |
+
# This is "good enough" for our purposes but not fully correct
|
1516 |
+
resume_step = None
|
1517 |
+
vectorized_datasets["train"] = vectorized_datasets["train"].shuffle(training_args.seed)
|
1518 |
+
else:
|
1519 |
+
resume_step = None
|
1520 |
+
|
1521 |
+
for epoch in range(epochs_trained, num_epochs):
|
1522 |
+
vectorized_datasets["train"] = vectorized_datasets["train"].shuffle(training_args.seed)
|
1523 |
+
train_dataloader = DataLoader(
|
1524 |
+
vectorized_datasets["train"],
|
1525 |
+
collate_fn=data_collator,
|
1526 |
+
batch_size=per_device_train_batch_size,
|
1527 |
+
num_workers=dataloader_num_workers,
|
1528 |
+
prefetch_factor=prefetch_factor,
|
1529 |
+
pin_memory=training_args.dataloader_pin_memory,
|
1530 |
+
)
|
1531 |
+
train_dataloader = accelerator.prepare(train_dataloader)
|
1532 |
+
if hasattr(train_dataloader, "dataset") and isinstance(train_dataloader.dataset, IterableDataset):
|
1533 |
+
train_dataloader.dataset.set_epoch(epoch)
|
1534 |
+
|
1535 |
+
if resume_step is not None:
|
1536 |
+
# Skip the first N batches in the dataloader when resuming from a checkpoint
|
1537 |
+
train_dataloader = accelerator.skip_first_batches(train_dataloader, resume_step)
|
1538 |
+
resume_step = None
|
1539 |
+
|
1540 |
+
for batch in train_dataloader:
|
1541 |
+
with accelerator.accumulate(student_model):
|
1542 |
+
loss, train_metric = train_step(batch, temperature=training_args.temperature)
|
1543 |
+
accelerator.backward(loss)
|
1544 |
+
if accelerator.sync_gradients:
|
1545 |
+
accelerator.clip_grad_norm_(student_model.parameters(), training_args.max_grad_norm)
|
1546 |
+
optimizer.step()
|
1547 |
+
lr_scheduler.step()
|
1548 |
+
optimizer.zero_grad()
|
1549 |
+
|
1550 |
+
# Check if the accelerator has performed an optimization step behind the scenes
|
1551 |
+
if accelerator.sync_gradients:
|
1552 |
+
steps_trained_progress_bar.update(1)
|
1553 |
+
cur_step += 1
|
1554 |
+
|
1555 |
+
if cur_step % training_args.logging_steps == 0:
|
1556 |
+
steps_trained_progress_bar.write(
|
1557 |
+
f"Step... ({cur_step} / {total_train_steps} | Loss:"
|
1558 |
+
f" {train_metric['loss']}, Learning Rate:"
|
1559 |
+
f" {lr_scheduler.get_last_lr()[0]})"
|
1560 |
+
)
|
1561 |
+
log_metric(
|
1562 |
+
accelerator,
|
1563 |
+
metrics=train_metric,
|
1564 |
+
learning_rate=lr_scheduler.get_last_lr()[0],
|
1565 |
+
train_time=train_time + time.time() - train_start,
|
1566 |
+
step=cur_step,
|
1567 |
+
epoch=epoch,
|
1568 |
+
prefix="train",
|
1569 |
+
)
|
1570 |
+
|
1571 |
+
# save checkpoint and weights after each save_steps and at the end of training
|
1572 |
+
if (cur_step % training_args.save_steps == 0) or cur_step == total_train_steps:
|
1573 |
+
intermediate_dir = os.path.join(training_args.output_dir, f"checkpoint-{cur_step}-epoch-{epoch}")
|
1574 |
+
accelerator.save_state(output_dir=intermediate_dir)
|
1575 |
+
accelerator.wait_for_everyone()
|
1576 |
+
if accelerator.is_main_process:
|
1577 |
+
rotate_checkpoints(training_args.save_total_limit, output_dir=training_args.output_dir)
|
1578 |
+
|
1579 |
+
if training_args.push_to_hub:
|
1580 |
+
upload_folder(
|
1581 |
+
folder_path=training_args.output_dir,
|
1582 |
+
repo_id=repo_name,
|
1583 |
+
repo_type="model",
|
1584 |
+
commit_message=f"Saving train state of step {cur_step}",
|
1585 |
+
)
|
1586 |
+
|
1587 |
+
if training_args.do_eval and (cur_step % eval_steps == 0 or cur_step == total_train_steps):
|
1588 |
+
train_time += time.time() - train_start
|
1589 |
+
student_model.eval()
|
1590 |
+
# ======================== Evaluating ==============================
|
1591 |
+
for eval_split in all_eval_splits:
|
1592 |
+
eval_metrics = []
|
1593 |
+
eval_preds = []
|
1594 |
+
eval_labels = []
|
1595 |
+
eval_start = time.time()
|
1596 |
+
|
1597 |
+
validation_dataloader = DataLoader(
|
1598 |
+
vectorized_datasets[eval_split],
|
1599 |
+
collate_fn=data_collator,
|
1600 |
+
batch_size=per_device_eval_batch_size,
|
1601 |
+
drop_last=False,
|
1602 |
+
num_workers=dataloader_num_workers,
|
1603 |
+
prefetch_factor=prefetch_factor,
|
1604 |
+
pin_memory=training_args.dataloader_pin_memory,
|
1605 |
+
)
|
1606 |
+
validation_dataloader = accelerator.prepare(validation_dataloader)
|
1607 |
+
|
1608 |
+
for batch in tqdm(
|
1609 |
+
validation_dataloader,
|
1610 |
+
desc=f"Evaluating {eval_split}...",
|
1611 |
+
position=2,
|
1612 |
+
disable=not accelerator.is_local_main_process,
|
1613 |
+
):
|
1614 |
+
# Model forward
|
1615 |
+
eval_metric = eval_step(batch)
|
1616 |
+
eval_metric = accelerator.gather_for_metrics(eval_metric)
|
1617 |
+
eval_metrics.append(eval_metric)
|
1618 |
+
|
1619 |
+
# generation
|
1620 |
+
if training_args.predict_with_generate:
|
1621 |
+
generated_ids = generate_step(batch)
|
1622 |
+
# Gather all predictions and targets
|
1623 |
+
generated_ids, labels = accelerator.gather_for_metrics(
|
1624 |
+
(generated_ids, batch["labels"])
|
1625 |
+
)
|
1626 |
+
eval_preds.extend(generated_ids)
|
1627 |
+
eval_labels.extend(labels)
|
1628 |
+
|
1629 |
+
eval_time = time.time() - eval_start
|
1630 |
+
# normalize eval metrics
|
1631 |
+
eval_metrics = {
|
1632 |
+
key: torch.mean(torch.stack([d[key] for d in eval_metrics])) for key in eval_metrics[0]
|
1633 |
+
}
|
1634 |
+
|
1635 |
+
# compute WER metric
|
1636 |
+
wer_desc = ""
|
1637 |
+
if training_args.predict_with_generate:
|
1638 |
+
wer_metric, pred_str, label_str, norm_pred_str, norm_label_str = compute_metrics(
|
1639 |
+
eval_preds, eval_labels
|
1640 |
+
)
|
1641 |
+
eval_metrics.update(wer_metric)
|
1642 |
+
wer_desc = " ".join([f"Eval {key}: {value} |" for key, value in wer_metric.items()])
|
1643 |
+
log_pred(
|
1644 |
+
accelerator,
|
1645 |
+
pred_str,
|
1646 |
+
label_str,
|
1647 |
+
norm_pred_str,
|
1648 |
+
norm_label_str,
|
1649 |
+
step=cur_step,
|
1650 |
+
prefix=eval_split,
|
1651 |
+
)
|
1652 |
+
|
1653 |
+
# Print metrics and update progress bar
|
1654 |
+
steps_trained_progress_bar.write(
|
1655 |
+
f"Eval results for step ({cur_step} / {total_train_steps} | Eval Loss: {eval_metrics['loss']} |"
|
1656 |
+
f" {wer_desc})"
|
1657 |
+
)
|
1658 |
+
|
1659 |
+
log_metric(
|
1660 |
+
accelerator,
|
1661 |
+
metrics=eval_metrics,
|
1662 |
+
train_time=eval_time,
|
1663 |
+
step=cur_step,
|
1664 |
+
epoch=epoch,
|
1665 |
+
prefix=eval_split,
|
1666 |
+
)
|
1667 |
+
|
1668 |
+
# flush the train metrics
|
1669 |
+
train_start = time.time()
|
1670 |
+
|
1671 |
+
# break condition
|
1672 |
+
if cur_step == total_train_steps:
|
1673 |
+
|
1674 |
+
# un-wrap student model for save
|
1675 |
+
student_model = accelerator.unwrap_model(student_model)
|
1676 |
+
student_model.save_pretrained(training_args.output_dir)
|
1677 |
+
|
1678 |
+
if training_args.push_to_hub:
|
1679 |
+
upload_folder(
|
1680 |
+
folder_path=training_args.output_dir,
|
1681 |
+
repo_id=repo_name,
|
1682 |
+
repo_type="model",
|
1683 |
+
commit_message=f"Saving final weights of step {cur_step}",
|
1684 |
+
)
|
1685 |
+
|
1686 |
+
continue_training = False
|
1687 |
+
break
|
1688 |
+
|
1689 |
+
if not continue_training:
|
1690 |
+
break
|
1691 |
+
|
1692 |
+
accelerator.end_training()
|
1693 |
+
|
1694 |
+
|
1695 |
+
if __name__ == "__main__":
|
1696 |
+
main()
|
checkpoint-5000-epoch-0/model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 3025686376
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:842f59bab397b6a8c02278413ccfd5d6dac9b7eb61db391a22a97732d4f13e55
|
3 |
size 3025686376
|
checkpoint-5000-epoch-0/optimizer.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 955539578
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c49615144cf408be66ec5684644e9cbaff970f8b799a32e4e5a523adb22fa90d
|
3 |
size 955539578
|
distil-whisper/events.out.tfevents.1714722015.server02.764303.0
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8b5b6f4d8b4b95639486918cbda0b7b686283c3fd88820c23b563c0dca074dc2
|
3 |
+
size 50898
|
distil-whisper/events.out.tfevents.1714724453.server02.769515.0
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1631a259decb801e2ec2a16c11026f4d8492b25f4aa45a735c5063acd5754a0c
|
3 |
+
size 88
|
distil-whisper/events.out.tfevents.1714724491.server02.769647.0
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:07d9cf426d6be544bc32ed9055598a109c9e3cf8eaf025bcd62c952286b4fce0
|
3 |
+
size 62058
|