sunileman commited on
Commit
ce54c45
·
1 Parent(s): dbc1433

Add new SentenceTransformer model.

Browse files
README.md CHANGED
@@ -5,6 +5,7 @@ tags:
5
  - sentence-transformers
6
  - feature-extraction
7
  - sentence-similarity
 
8
 
9
  ---
10
 
@@ -35,6 +36,44 @@ print(embeddings)
35
 
36
 
37
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
38
  ## Evaluation Results
39
 
40
  <!--- Describe how your model was evaluated -->
@@ -69,7 +108,7 @@ Parameters of the fit()-Method:
69
  },
70
  "scheduler": "WarmupLinear",
71
  "steps_per_epoch": null,
72
- "warmup_steps": 1,
73
  "weight_decay": 0.01
74
  }
75
  ```
@@ -78,9 +117,8 @@ Parameters of the fit()-Method:
78
  ## Full Model Architecture
79
  ```
80
  SentenceTransformer(
81
- (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: RobertaModel
82
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False})
83
- (2): Normalize()
84
  )
85
  ```
86
 
 
5
  - sentence-transformers
6
  - feature-extraction
7
  - sentence-similarity
8
+ - transformers
9
 
10
  ---
11
 
 
36
 
37
 
38
 
39
+ ## Usage (HuggingFace Transformers)
40
+ Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
41
+
42
+ ```python
43
+ from transformers import AutoTokenizer, AutoModel
44
+ import torch
45
+
46
+
47
+ #Mean Pooling - Take attention mask into account for correct averaging
48
+ def mean_pooling(model_output, attention_mask):
49
+ token_embeddings = model_output[0] #First element of model_output contains all token embeddings
50
+ input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
51
+ return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
52
+
53
+
54
+ # Sentences we want sentence embeddings for
55
+ sentences = ['This is an example sentence', 'Each sentence is converted']
56
+
57
+ # Load model from HuggingFace Hub
58
+ tokenizer = AutoTokenizer.from_pretrained('sunileman/nli-distilroberta-base-v2')
59
+ model = AutoModel.from_pretrained('sunileman/nli-distilroberta-base-v2')
60
+
61
+ # Tokenize sentences
62
+ encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
63
+
64
+ # Compute token embeddings
65
+ with torch.no_grad():
66
+ model_output = model(**encoded_input)
67
+
68
+ # Perform pooling. In this case, mean pooling.
69
+ sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
70
+
71
+ print("Sentence embeddings:")
72
+ print(sentence_embeddings)
73
+ ```
74
+
75
+
76
+
77
  ## Evaluation Results
78
 
79
  <!--- Describe how your model was evaluated -->
 
108
  },
109
  "scheduler": "WarmupLinear",
110
  "steps_per_epoch": null,
111
+ "warmup_steps": 6,
112
  "weight_decay": 0.01
113
  }
114
  ```
 
117
  ## Full Model Architecture
118
  ```
119
  SentenceTransformer(
120
+ (0): Transformer({'max_seq_length': 75, 'do_lower_case': False}) with Transformer model: RobertaModel
121
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False})
 
122
  )
123
  ```
124
 
config.json CHANGED
@@ -1,5 +1,5 @@
1
  {
2
- "_name_or_path": "sunileman/nli-distilroberta-base-v2",
3
  "architectures": [
4
  "RobertaModel"
5
  ],
 
1
  {
2
+ "_name_or_path": "sentence-transformers/nli-distilroberta-base-v2",
3
  "architectures": [
4
  "RobertaModel"
5
  ],
config_sentence_transformers.json CHANGED
@@ -1,7 +1,7 @@
1
  {
2
  "__version__": {
3
  "sentence_transformers": "2.0.0",
4
- "transformers": "4.6.1",
5
- "pytorch": "1.8.1"
6
  }
7
  }
 
1
  {
2
  "__version__": {
3
  "sentence_transformers": "2.0.0",
4
+ "transformers": "4.7.0",
5
+ "pytorch": "1.9.0+cu102"
6
  }
7
  }
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:b79557af7826a22917e5bfa4b77903a3def1f35f56dac6bf0077d51626a356b1
3
  size 328485128
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f3096ebc0bfef771fa198981a501e4e7821934fad5b46a8660ed3d148714f7df
3
  size 328485128
modules.json CHANGED
@@ -10,11 +10,5 @@
10
  "name": "1",
11
  "path": "1_Pooling",
12
  "type": "sentence_transformers.models.Pooling"
13
- },
14
- {
15
- "idx": 2,
16
- "name": "2",
17
- "path": "2_Normalize",
18
- "type": "sentence_transformers.models.Normalize"
19
  }
20
  ]
 
10
  "name": "1",
11
  "path": "1_Pooling",
12
  "type": "sentence_transformers.models.Pooling"
 
 
 
 
 
 
13
  }
14
  ]
sentence_bert_config.json CHANGED
@@ -1,4 +1,4 @@
1
  {
2
- "max_seq_length": 512,
3
  "do_lower_case": false
4
  }
 
1
  {
2
+ "max_seq_length": 75,
3
  "do_lower_case": false
4
  }
special_tokens_map.json CHANGED
@@ -1,25 +1,7 @@
1
  {
2
- "bos_token": {
3
- "content": "<s>",
4
- "lstrip": false,
5
- "normalized": false,
6
- "rstrip": false,
7
- "single_word": false
8
- },
9
- "cls_token": {
10
- "content": "<s>",
11
- "lstrip": false,
12
- "normalized": false,
13
- "rstrip": false,
14
- "single_word": false
15
- },
16
- "eos_token": {
17
- "content": "</s>",
18
- "lstrip": false,
19
- "normalized": false,
20
- "rstrip": false,
21
- "single_word": false
22
- },
23
  "mask_token": {
24
  "content": "<mask>",
25
  "lstrip": true,
@@ -27,25 +9,7 @@
27
  "rstrip": false,
28
  "single_word": false
29
  },
30
- "pad_token": {
31
- "content": "<pad>",
32
- "lstrip": false,
33
- "normalized": false,
34
- "rstrip": false,
35
- "single_word": false
36
- },
37
- "sep_token": {
38
- "content": "</s>",
39
- "lstrip": false,
40
- "normalized": false,
41
- "rstrip": false,
42
- "single_word": false
43
- },
44
- "unk_token": {
45
- "content": "<unk>",
46
- "lstrip": false,
47
- "normalized": false,
48
- "rstrip": false,
49
- "single_word": false
50
- }
51
  }
 
1
  {
2
+ "bos_token": "<s>",
3
+ "cls_token": "<s>",
4
+ "eos_token": "</s>",
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5
  "mask_token": {
6
  "content": "<mask>",
7
  "lstrip": true,
 
9
  "rstrip": false,
10
  "single_word": false
11
  },
12
+ "pad_token": "<pad>",
13
+ "sep_token": "</s>",
14
+ "unk_token": "<unk>"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
15
  }
tokenizer.json CHANGED
@@ -2,7 +2,7 @@
2
  "version": "1.0",
3
  "truncation": {
4
  "direction": "Right",
5
- "max_length": 512,
6
  "strategy": "LongestFirst",
7
  "stride": 0
8
  },
 
2
  "version": "1.0",
3
  "truncation": {
4
  "direction": "Right",
5
+ "max_length": 75,
6
  "strategy": "LongestFirst",
7
  "stride": 0
8
  },
tokenizer_config.json CHANGED
@@ -48,17 +48,10 @@
48
  "eos_token": "</s>",
49
  "errors": "replace",
50
  "mask_token": "<mask>",
51
- "max_length": 128,
52
  "model_max_length": 512,
53
- "pad_to_multiple_of": null,
54
  "pad_token": "<pad>",
55
- "pad_token_type_id": 0,
56
- "padding_side": "right",
57
  "sep_token": "</s>",
58
- "stride": 0,
59
  "tokenizer_class": "RobertaTokenizer",
60
  "trim_offsets": true,
61
- "truncation_side": "right",
62
- "truncation_strategy": "longest_first",
63
  "unk_token": "<unk>"
64
  }
 
48
  "eos_token": "</s>",
49
  "errors": "replace",
50
  "mask_token": "<mask>",
 
51
  "model_max_length": 512,
 
52
  "pad_token": "<pad>",
 
 
53
  "sep_token": "</s>",
 
54
  "tokenizer_class": "RobertaTokenizer",
55
  "trim_offsets": true,
 
 
56
  "unk_token": "<unk>"
57
  }