File size: 12,272 Bytes
a3de875
 
b9cc778
 
 
 
 
 
 
 
 
a3de875
 
b9cc778
 
a3de875
b9cc778
a3de875
b9cc778
 
953122c
 
 
 
b9cc778
953122c
b9cc778
 
953122c
b9cc778
a3de875
b9cc778
a3de875
b9cc778
a3de875
b9cc778
a3de875
b9cc778
a3de875
b9cc778
a3de875
b9cc778
a3de875
b9cc778
a3de875
b9cc778
a3de875
b9cc778
 
 
 
 
 
 
953122c
a3de875
b9cc778
a3de875
b9cc778
 
953122c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a3de875
 
b9cc778
a3de875
b9cc778
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
---
library_name: transformers
license: other
base_model: nvidia/mit-b0
tags:
- vision
- image-segmentation
- generated_from_trainer
model-index:
- name: custom-object-test7
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# custom-object-test7

This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the sungile/custom-object-masking5 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1507
- Mean Iou: 0.3557
- Mean Accuracy: 0.7113
- Overall Accuracy: 0.7113
- Accuracy Unknown: nan
- Accuracy Background: 0.7113
- Accuracy Object: nan
- Iou Unknown: 0.0
- Iou Background: 0.7113
- Iou Object: nan

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 13

### Training results

| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unknown | Accuracy Background | Accuracy Object | Iou Unknown | Iou Background | Iou Object |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:----------------:|:-------------------:|:---------------:|:-----------:|:--------------:|:----------:|
| 0.7249        | 0.25  | 20   | 0.9434          | 0.2871   | 0.8614        | 0.8614           | nan              | 0.8614              | nan             | 0.0         | 0.8614         | 0.0        |
| 0.7121        | 0.5   | 40   | 0.6610          | 0.3810   | 0.7620        | 0.7620           | nan              | 0.7620              | nan             | 0.0         | 0.7620         | nan        |
| 0.4732        | 0.75  | 60   | 0.5195          | 0.3888   | 0.7775        | 0.7775           | nan              | 0.7775              | nan             | 0.0         | 0.7775         | nan        |
| 0.5129        | 1.0   | 80   | 0.4134          | 0.2955   | 0.5910        | 0.5910           | nan              | 0.5910              | nan             | 0.0         | 0.5910         | nan        |
| 0.4451        | 1.25  | 100  | 0.3473          | 0.2485   | 0.4971        | 0.4971           | nan              | 0.4971              | nan             | 0.0         | 0.4971         | nan        |
| 0.4109        | 1.5   | 120  | 0.3279          | 0.2516   | 0.5033        | 0.5033           | nan              | 0.5033              | nan             | 0.0         | 0.5033         | nan        |
| 0.3659        | 1.75  | 140  | 0.3014          | 0.2695   | 0.5391        | 0.5391           | nan              | 0.5391              | nan             | 0.0         | 0.5391         | nan        |
| 0.2206        | 2.0   | 160  | 0.2773          | 0.2581   | 0.5163        | 0.5163           | nan              | 0.5163              | nan             | 0.0         | 0.5163         | nan        |
| 0.2452        | 2.25  | 180  | 0.2575          | 0.2982   | 0.5964        | 0.5964           | nan              | 0.5964              | nan             | 0.0         | 0.5964         | nan        |
| 0.2496        | 2.5   | 200  | 0.2523          | 0.3345   | 0.6690        | 0.6690           | nan              | 0.6690              | nan             | 0.0         | 0.6690         | nan        |
| 0.1633        | 2.75  | 220  | 0.3160          | 0.4074   | 0.8149        | 0.8149           | nan              | 0.8149              | nan             | 0.0         | 0.8149         | nan        |
| 0.1426        | 3.0   | 240  | 0.2242          | 0.3451   | 0.6903        | 0.6903           | nan              | 0.6903              | nan             | 0.0         | 0.6903         | nan        |
| 0.1363        | 3.25  | 260  | 0.2225          | 0.3505   | 0.7010        | 0.7010           | nan              | 0.7010              | nan             | 0.0         | 0.7010         | nan        |
| 0.1337        | 3.5   | 280  | 0.2229          | 0.3799   | 0.7599        | 0.7599           | nan              | 0.7599              | nan             | 0.0         | 0.7599         | nan        |
| 0.1611        | 3.75  | 300  | 0.1971          | 0.3535   | 0.7070        | 0.7070           | nan              | 0.7070              | nan             | 0.0         | 0.7070         | nan        |
| 0.1376        | 4.0   | 320  | 0.1835          | 0.3504   | 0.7007        | 0.7007           | nan              | 0.7007              | nan             | 0.0         | 0.7007         | nan        |
| 0.1367        | 4.25  | 340  | 0.1735          | 0.3226   | 0.6453        | 0.6453           | nan              | 0.6453              | nan             | 0.0         | 0.6453         | nan        |
| 0.1452        | 4.5   | 360  | 0.1689          | 0.3096   | 0.6192        | 0.6192           | nan              | 0.6192              | nan             | 0.0         | 0.6192         | nan        |
| 0.1323        | 4.75  | 380  | 0.1741          | 0.3343   | 0.6685        | 0.6685           | nan              | 0.6685              | nan             | 0.0         | 0.6685         | nan        |
| 0.1519        | 5.0   | 400  | 0.1647          | 0.3433   | 0.6866        | 0.6866           | nan              | 0.6866              | nan             | 0.0         | 0.6866         | nan        |
| 0.1013        | 5.25  | 420  | 0.1645          | 0.3575   | 0.7149        | 0.7149           | nan              | 0.7149              | nan             | 0.0         | 0.7149         | nan        |
| 0.0967        | 5.5   | 440  | 0.1645          | 0.3620   | 0.7241        | 0.7241           | nan              | 0.7241              | nan             | 0.0         | 0.7241         | nan        |
| 0.1306        | 5.75  | 460  | 0.1646          | 0.3262   | 0.6523        | 0.6523           | nan              | 0.6523              | nan             | 0.0         | 0.6523         | nan        |
| 0.2066        | 6.0   | 480  | 0.1600          | 0.3326   | 0.6651        | 0.6651           | nan              | 0.6651              | nan             | 0.0         | 0.6651         | nan        |
| 0.0671        | 6.25  | 500  | 0.1546          | 0.3433   | 0.6867        | 0.6867           | nan              | 0.6867              | nan             | 0.0         | 0.6867         | nan        |
| 0.0644        | 6.5   | 520  | 0.1612          | 0.3284   | 0.6568        | 0.6568           | nan              | 0.6568              | nan             | 0.0         | 0.6568         | nan        |
| 0.0518        | 6.75  | 540  | 0.1575          | 0.3633   | 0.7266        | 0.7266           | nan              | 0.7266              | nan             | 0.0         | 0.7266         | nan        |
| 0.086         | 7.0   | 560  | 0.1535          | 0.3490   | 0.6980        | 0.6980           | nan              | 0.6980              | nan             | 0.0         | 0.6980         | nan        |
| 0.0602        | 7.25  | 580  | 0.1624          | 0.2988   | 0.5976        | 0.5976           | nan              | 0.5976              | nan             | 0.0         | 0.5976         | nan        |
| 0.1332        | 7.5   | 600  | 0.1530          | 0.3532   | 0.7063        | 0.7063           | nan              | 0.7063              | nan             | 0.0         | 0.7063         | nan        |
| 0.0494        | 7.75  | 620  | 0.1461          | 0.3732   | 0.7465        | 0.7465           | nan              | 0.7465              | nan             | 0.0         | 0.7465         | nan        |
| 0.0685        | 8.0   | 640  | 0.1554          | 0.3198   | 0.6396        | 0.6396           | nan              | 0.6396              | nan             | 0.0         | 0.6396         | nan        |
| 0.0492        | 8.25  | 660  | 0.1484          | 0.3563   | 0.7125        | 0.7125           | nan              | 0.7125              | nan             | 0.0         | 0.7125         | nan        |
| 0.0525        | 8.5   | 680  | 0.1485          | 0.3341   | 0.6681        | 0.6681           | nan              | 0.6681              | nan             | 0.0         | 0.6681         | nan        |
| 0.0911        | 8.75  | 700  | 0.1553          | 0.3257   | 0.6515        | 0.6515           | nan              | 0.6515              | nan             | 0.0         | 0.6515         | nan        |
| 0.0493        | 9.0   | 720  | 0.1481          | 0.3598   | 0.7197        | 0.7197           | nan              | 0.7197              | nan             | 0.0         | 0.7197         | nan        |
| 0.0445        | 9.25  | 740  | 0.1540          | 0.3536   | 0.7073        | 0.7073           | nan              | 0.7073              | nan             | 0.0         | 0.7073         | nan        |
| 0.0723        | 9.5   | 760  | 0.1481          | 0.3461   | 0.6921        | 0.6921           | nan              | 0.6921              | nan             | 0.0         | 0.6921         | nan        |
| 0.047         | 9.75  | 780  | 0.1479          | 0.3495   | 0.6990        | 0.6990           | nan              | 0.6990              | nan             | 0.0         | 0.6990         | nan        |
| 0.0703        | 10.0  | 800  | 0.1489          | 0.3553   | 0.7106        | 0.7106           | nan              | 0.7106              | nan             | 0.0         | 0.7106         | nan        |
| 0.0532        | 10.25 | 820  | 0.1475          | 0.3635   | 0.7270        | 0.7270           | nan              | 0.7270              | nan             | 0.0         | 0.7270         | nan        |
| 0.0407        | 10.5  | 840  | 0.1481          | 0.3540   | 0.7079        | 0.7079           | nan              | 0.7079              | nan             | 0.0         | 0.7079         | nan        |
| 0.0395        | 10.75 | 860  | 0.1545          | 0.3430   | 0.6861        | 0.6861           | nan              | 0.6861              | nan             | 0.0         | 0.6861         | nan        |
| 0.1379        | 11.0  | 880  | 0.1531          | 0.3427   | 0.6854        | 0.6854           | nan              | 0.6854              | nan             | 0.0         | 0.6854         | nan        |
| 0.0281        | 11.25 | 900  | 0.1483          | 0.3466   | 0.6932        | 0.6932           | nan              | 0.6932              | nan             | 0.0         | 0.6932         | nan        |
| 0.0361        | 11.5  | 920  | 0.1560          | 0.3424   | 0.6848        | 0.6848           | nan              | 0.6848              | nan             | 0.0         | 0.6848         | nan        |
| 0.0422        | 11.75 | 940  | 0.1494          | 0.3576   | 0.7152        | 0.7152           | nan              | 0.7152              | nan             | 0.0         | 0.7152         | nan        |
| 0.0541        | 12.0  | 960  | 0.1502          | 0.3552   | 0.7105        | 0.7105           | nan              | 0.7105              | nan             | 0.0         | 0.7105         | nan        |
| 0.0568        | 12.25 | 980  | 0.1549          | 0.3442   | 0.6885        | 0.6885           | nan              | 0.6885              | nan             | 0.0         | 0.6885         | nan        |
| 0.0881        | 12.5  | 1000 | 0.1516          | 0.3481   | 0.6963        | 0.6963           | nan              | 0.6963              | nan             | 0.0         | 0.6963         | nan        |
| 0.0478        | 12.75 | 1020 | 0.1527          | 0.3524   | 0.7047        | 0.7047           | nan              | 0.7047              | nan             | 0.0         | 0.7047         | nan        |
| 0.0529        | 13.0  | 1040 | 0.1507          | 0.3557   | 0.7113        | 0.7113           | nan              | 0.7113              | nan             | 0.0         | 0.7113         | nan        |


### Framework versions

- Transformers 4.47.1
- Pytorch 2.1.0+cu118
- Datasets 3.2.0
- Tokenizers 0.21.0