Update README.md
Browse files
README.md
CHANGED
|
@@ -26,7 +26,8 @@ model-index:
|
|
| 26 |
---
|
| 27 |
|
| 28 |
# Wav2Vec2-Large-XLSR-53-Marathi
|
| 29 |
-
Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Marathi using the [OpenSLR SLR64](http://openslr.org/64/) dataset. When using this model, make sure that your speech input is sampled at 16kHz. This data contains only female voices
|
|
|
|
| 30 |
## Usage
|
| 31 |
The model can be used directly without a language model as follows, given that your dataset has Marathi `actual_text` and `path_in_folder` columns:
|
| 32 |
```python
|
|
@@ -42,13 +43,13 @@ model = Wav2Vec2ForCTC.from_pretrained("sumedh/wav2vec2-large-xlsr-marathi")
|
|
| 42 |
resampler = torchaudio.transforms.Resample(48_000, 16_000) #first arg - input sample, second arg - output sample
|
| 43 |
# Preprocessing the datasets. We need to read the aduio files as arrays
|
| 44 |
def speech_file_to_array_fn(batch):
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
mr_test_dataset_new = mr_test_dataset_new.map(speech_file_to_array_fn)
|
| 49 |
inputs = processor(mr_test_dataset_new["speech"][:5], sampling_rate=16_000, return_tensors="pt", padding=True)
|
| 50 |
with torch.no_grad():
|
| 51 |
-
|
| 52 |
predicted_ids = torch.argmax(logits, dim=-1)
|
| 53 |
print("Prediction:", processor.batch_decode(predicted_ids))
|
| 54 |
print("Reference:", mr_test_dataset_new["actual_text"][:5])
|
|
@@ -67,26 +68,26 @@ processor = Wav2Vec2Processor.from_pretrained("sumedh/wav2vec2-large-xlsr-marath
|
|
| 67 |
model = Wav2Vec2ForCTC.from_pretrained("sumedh/wav2vec2-large-xlsr-marathi")
|
| 68 |
model.to("cuda")
|
| 69 |
|
| 70 |
-
chars_to_ignore_regex = '[
|
| 71 |
resampler = torchaudio.transforms.Resample(48_000, 16_000)
|
| 72 |
# Preprocessing the datasets. We need to read the aduio files as arrays
|
| 73 |
def speech_file_to_array_fn(batch):
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
mr_test_dataset_new = mr_test_dataset_new.map(speech_file_to_array_fn)
|
| 79 |
def evaluate(batch):
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
result = mr_test_dataset_new.map(evaluate, batched=True, batch_size=8)
|
| 87 |
print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["actual_text"])))
|
| 88 |
```
|
| 89 |
-
|
| 90 |
## Training
|
| 91 |
Train-Test ratio was 90:10.
|
| 92 |
The colab notebook used for training can be found [here](https://colab.research.google.com/drive/1wX46fjExcgU5t3AsWhSPTipWg_aMDg2f?usp=sharing).
|
|
|
|
| 26 |
---
|
| 27 |
|
| 28 |
# Wav2Vec2-Large-XLSR-53-Marathi
|
| 29 |
+
Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Marathi using the [OpenSLR SLR64](http://openslr.org/64/) dataset. When using this model, make sure that your speech input is sampled at 16kHz. This data contains only female voices but it works well for male voices too.
|
| 30 |
+
**WER on the Test Set**: 12.70 %
|
| 31 |
## Usage
|
| 32 |
The model can be used directly without a language model as follows, given that your dataset has Marathi `actual_text` and `path_in_folder` columns:
|
| 33 |
```python
|
|
|
|
| 43 |
resampler = torchaudio.transforms.Resample(48_000, 16_000) #first arg - input sample, second arg - output sample
|
| 44 |
# Preprocessing the datasets. We need to read the aduio files as arrays
|
| 45 |
def speech_file_to_array_fn(batch):
|
| 46 |
+
speech_array, sampling_rate = torchaudio.load(batch["path_in_folder"])
|
| 47 |
+
batch["speech"] = resampler(speech_array).squeeze().numpy()
|
| 48 |
+
return batch
|
| 49 |
mr_test_dataset_new = mr_test_dataset_new.map(speech_file_to_array_fn)
|
| 50 |
inputs = processor(mr_test_dataset_new["speech"][:5], sampling_rate=16_000, return_tensors="pt", padding=True)
|
| 51 |
with torch.no_grad():
|
| 52 |
+
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
|
| 53 |
predicted_ids = torch.argmax(logits, dim=-1)
|
| 54 |
print("Prediction:", processor.batch_decode(predicted_ids))
|
| 55 |
print("Reference:", mr_test_dataset_new["actual_text"][:5])
|
|
|
|
| 68 |
model = Wav2Vec2ForCTC.from_pretrained("sumedh/wav2vec2-large-xlsr-marathi")
|
| 69 |
model.to("cuda")
|
| 70 |
|
| 71 |
+
chars_to_ignore_regex = '[\\\\\\\\,\\\\\\\\?\\\\\\\\.\\\\\\\\!\\\\\\\\-\\\\\\\\;\\\\\\\\:\\\\\\\\"\\\\\\\\“]'
|
| 72 |
resampler = torchaudio.transforms.Resample(48_000, 16_000)
|
| 73 |
# Preprocessing the datasets. We need to read the aduio files as arrays
|
| 74 |
def speech_file_to_array_fn(batch):
|
| 75 |
+
batch["actual_text"] = re.sub(chars_to_ignore_regex, '', batch["actual_text"]).lower()
|
| 76 |
+
speech_array, sampling_rate = torchaudio.load(batch["path_in_folder"])
|
| 77 |
+
batch["speech"] = resampler(speech_array).squeeze().numpy()
|
| 78 |
+
return batch
|
| 79 |
mr_test_dataset_new = mr_test_dataset_new.map(speech_file_to_array_fn)
|
| 80 |
def evaluate(batch):
|
| 81 |
+
inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
|
| 82 |
+
with torch.no_grad():
|
| 83 |
+
logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
|
| 84 |
+
pred_ids = torch.argmax(logits, dim=-1)
|
| 85 |
+
batch["pred_strings"] = processor.batch_decode(pred_ids)
|
| 86 |
+
return batch
|
| 87 |
result = mr_test_dataset_new.map(evaluate, batched=True, batch_size=8)
|
| 88 |
print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["actual_text"])))
|
| 89 |
```
|
| 90 |
+
|
| 91 |
## Training
|
| 92 |
Train-Test ratio was 90:10.
|
| 93 |
The colab notebook used for training can be found [here](https://colab.research.google.com/drive/1wX46fjExcgU5t3AsWhSPTipWg_aMDg2f?usp=sharing).
|