Upload configuration_codet5p.py
Browse files- configuration_codet5p.py +113 -0
configuration_codet5p.py
ADDED
|
@@ -0,0 +1,113 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# coding=utf-8
|
| 2 |
+
# Copyright 2023 Salesforce authors, The EleutherAI, and HuggingFace Teams. All rights reserved.
|
| 3 |
+
|
| 4 |
+
""" CodeT5+ model configuration"""
|
| 5 |
+
from transformers.configuration_utils import PretrainedConfig
|
| 6 |
+
from transformers.utils import logging
|
| 7 |
+
import copy
|
| 8 |
+
|
| 9 |
+
logger = logging.get_logger(__name__)
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
# Adapted from transformers.models.codegen.configuration_codegen.CodeGenConfig
|
| 13 |
+
class CodeT5pModuleConfig(PretrainedConfig):
|
| 14 |
+
model_type = "codet5p_module"
|
| 15 |
+
attribute_map = {
|
| 16 |
+
"max_position_embeddings": "n_positions",
|
| 17 |
+
"hidden_size": "n_embd",
|
| 18 |
+
"num_attention_heads": "n_head",
|
| 19 |
+
"num_hidden_layers": "n_layer",
|
| 20 |
+
}
|
| 21 |
+
|
| 22 |
+
def __init__(
|
| 23 |
+
self,
|
| 24 |
+
vocab_size=50400,
|
| 25 |
+
n_positions=2048,
|
| 26 |
+
n_ctx=2048,
|
| 27 |
+
n_embd=4096,
|
| 28 |
+
n_layer=28,
|
| 29 |
+
n_head=16,
|
| 30 |
+
rotary_dim=64,
|
| 31 |
+
n_inner=None,
|
| 32 |
+
activation_function="gelu_new",
|
| 33 |
+
resid_pdrop=0.0,
|
| 34 |
+
embd_pdrop=0.0,
|
| 35 |
+
attn_pdrop=0.0,
|
| 36 |
+
layer_norm_epsilon=1e-5,
|
| 37 |
+
initializer_range=0.02,
|
| 38 |
+
scale_attn_weights=True,
|
| 39 |
+
use_cache=True,
|
| 40 |
+
bos_token_id=50256,
|
| 41 |
+
eos_token_id=50256,
|
| 42 |
+
tie_word_embeddings=False,
|
| 43 |
+
**kwargs
|
| 44 |
+
):
|
| 45 |
+
self.vocab_size = vocab_size
|
| 46 |
+
self.n_ctx = n_ctx
|
| 47 |
+
self.n_positions = n_positions
|
| 48 |
+
self.n_embd = n_embd
|
| 49 |
+
self.n_layer = n_layer
|
| 50 |
+
self.n_head = n_head
|
| 51 |
+
self.n_inner = n_inner
|
| 52 |
+
self.rotary_dim = rotary_dim
|
| 53 |
+
self.activation_function = activation_function
|
| 54 |
+
self.resid_pdrop = resid_pdrop
|
| 55 |
+
self.embd_pdrop = embd_pdrop
|
| 56 |
+
self.attn_pdrop = attn_pdrop
|
| 57 |
+
self.layer_norm_epsilon = layer_norm_epsilon
|
| 58 |
+
self.initializer_range = initializer_range
|
| 59 |
+
self.scale_attn_weights = scale_attn_weights
|
| 60 |
+
self.use_cache = use_cache
|
| 61 |
+
|
| 62 |
+
self.bos_token_id = bos_token_id
|
| 63 |
+
self.eos_token_id = eos_token_id
|
| 64 |
+
|
| 65 |
+
super().__init__(
|
| 66 |
+
bos_token_id=bos_token_id, eos_token_id=eos_token_id, tie_word_embeddings=tie_word_embeddings, **kwargs
|
| 67 |
+
)
|
| 68 |
+
|
| 69 |
+
|
| 70 |
+
# Adapted from transformers.models.encoder_decoder.configuration_encoder_decoder.EncoderDecoderConfig
|
| 71 |
+
class CodeT5pConfig(PretrainedConfig):
|
| 72 |
+
model_type = "codet5p"
|
| 73 |
+
is_composition = True
|
| 74 |
+
|
| 75 |
+
def __init__(self, **kwargs):
|
| 76 |
+
super().__init__(**kwargs)
|
| 77 |
+
assert (
|
| 78 |
+
"encoder" in kwargs and "decoder" in kwargs
|
| 79 |
+
), "Config has to be initialized with encoder and decoder config"
|
| 80 |
+
encoder_config = kwargs.pop("encoder")
|
| 81 |
+
decoder_config = kwargs.pop("decoder")
|
| 82 |
+
encoder_model_type = encoder_config.pop("model_type")
|
| 83 |
+
decoder_model_type = decoder_config.pop("model_type")
|
| 84 |
+
|
| 85 |
+
if encoder_model_type != decoder_model_type:
|
| 86 |
+
logger.warning("Encoder and decoder model types are different")
|
| 87 |
+
|
| 88 |
+
self.encoder = CodeT5pModuleConfig(**encoder_config)
|
| 89 |
+
self.decoder = CodeT5pModuleConfig(**decoder_config)
|
| 90 |
+
self.is_encoder_decoder = True
|
| 91 |
+
|
| 92 |
+
@classmethod
|
| 93 |
+
def from_encoder_decoder_configs(
|
| 94 |
+
cls, encoder_config: PretrainedConfig, decoder_config: PretrainedConfig, **kwargs
|
| 95 |
+
) -> PretrainedConfig:
|
| 96 |
+
logger.info("Set `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config")
|
| 97 |
+
decoder_config.is_decoder = True
|
| 98 |
+
decoder_config.add_cross_attention = True
|
| 99 |
+
|
| 100 |
+
return cls(encoder=encoder_config.to_dict(), decoder=decoder_config.to_dict(), **kwargs)
|
| 101 |
+
|
| 102 |
+
def to_dict(self):
|
| 103 |
+
"""
|
| 104 |
+
Serializes this instance to a Python dictionary. Override the default *to_dict()* from *PretrainedConfig*.
|
| 105 |
+
|
| 106 |
+
Returns:
|
| 107 |
+
`Dict[str, any]`: Dictionary of all the attributes that make up this configuration instance,
|
| 108 |
+
"""
|
| 109 |
+
output = copy.deepcopy(self.__dict__)
|
| 110 |
+
output["encoder"] = self.encoder.to_dict()
|
| 111 |
+
output["decoder"] = self.decoder.to_dict()
|
| 112 |
+
output["model_type"] = self.__class__.model_type
|
| 113 |
+
return output
|