stonet2000 commited on
Commit
aaceb97
·
verified ·
1 Parent(s): 186e400

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +58 -0
README.md ADDED
@@ -0,0 +1,58 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaReachDense-v3
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaReachDense-v3
16
+ type: PandaReachDense-v3
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -0.22 +/- 0.12
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **PandaReachDense-v3**
25
+ This is a trained model of a **PPO** agent playing **PandaReachDense-v3**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+
34
+ from stable_baselines3 import PPO
35
+ from huggingface_sb3 import load_from_hub, package_to_hub
36
+ from stable_baselines3.common.vec_env import DummyVecEnv, VecNormalize
37
+
38
+ env_id = "PandaReachDense-v3"
39
+ env = gym.make(env_id)
40
+ env = make_vec_env(env_id, n_envs=4)
41
+ env = VecNormalize(env, training=True, norm_obs=True, norm_reward=True, gamma=0.5, epsilon=1e-10, norm_obs_keys=None)
42
+
43
+ model = PPO("MultiInputPolicy", env, verbose=1)
44
+ model.learn(1_000_000)
45
+
46
+ eval_env = DummyVecEnv([lambda: gym.make("PandaReachDense-v3")])
47
+ eval_env = VecNormalize.load("vec_normalize.pkl", eval_env)
48
+ eval_env.render_mode = "rgb_array"
49
+ eval_env.training = False
50
+ # reward normalization is not needed at test time
51
+ eval_env.norm_reward = False
52
+
53
+
54
+ model = PPO.load("Slay-PandaReachDense-v3")
55
+ mean_reward, std_reward = evaluate_policy(model, eval_env)
56
+ print(f"Mean reward = {mean_reward:.2f} +/- {std_reward:.2f}")
57
+ ...
58
+ ```