File size: 4,781 Bytes
d5062c8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
# -*- coding: utf-8 -*-
"""
Created on Mon Aug 30 19:54:17 2021

@author: luol2

input representation of model

"""

import os, sys
import numpy as np
from tensorflow.keras.preprocessing.sequence import pad_sequences
from transformers import AutoTokenizer

           

class Hugface_RepresentationLayer(object):
    
    
    def __init__(self, tokenizer_name_or_path, label_file,lowercase=True):
        

        #load vocab

        self.model_type='bert'
        self.tokenizer = AutoTokenizer.from_pretrained(tokenizer_name_or_path, use_fast=True,do_lower_case=lowercase)
        
        self.tokenizer.add_tokens(["arg1s","arg1e","gene1s","gene1e","species1s","species1e"])

        #load label
        self.label_2_index={}
        self.index_2_label={}
        self.label_table_size=0
        self.load_label_vocab(label_file,self.label_2_index,self.index_2_label)
        self.label_table_size=len(self.label_2_index)
        self.vocab_len=len(self.tokenizer)
       
    def load_label_vocab(self,fea_file,fea_index,index_2_label):
        
        fin=open(fea_file,'r',encoding='utf-8')
        all_text=fin.read().strip().split('\n')
        fin.close()
        for i in range(0,len(all_text)):
            fea_index[all_text[i]]=i
            index_2_label[str(i)]=all_text[i]
            

            
    def generate_label_list(self,bert_tokens,labels,word_index):
        label_list=['O']*len(word_index)
        label_i=0
        if len(word_index)!=len(bert_tokens):
            print('index != tokens',word_index,bert_tokens)
            sys.exit()
        last_word_index=0
        for i in range(0,len(word_index)):
            if word_index[i]==None:
                pass
            else:
                label_list[i]=labels[word_index[i]]
        
        label_list_index=[]
        bert_text_label=[]
        for i in range(0,len(bert_tokens)):
            label_list_index.append(self.label_2_index[label_list[i]])
            bert_text_label.append([bert_tokens[i],label_list[i]])

        return label_list_index,bert_text_label
    
    
    def load_data_hugface(self,instances, labels,  word_max_len=100, label_type='softmax'):
    
        x_index=[]
        x_seg=[]
        x_mask=[]
        y_list=[]
        bert_text_labels=[]
        max_len=0
        over_num=0
        maxT=word_max_len
        ave_len=0

            
        for sentence in instances:                           
            sentence_text_list=[]
            label_list=[]
            for j in range(0,len(sentence)):
                sentence_text_list.append(sentence[j][0])
                label_list.append(sentence[j][-1])

            token_result=self.tokenizer(
                sentence_text_list,
                max_length=word_max_len,
                truncation=True,is_split_into_words=True)
            
            bert_tokens=self.tokenizer.convert_ids_to_tokens(token_result['input_ids'])
            word_index=token_result.word_ids(batch_index=0)
            ave_len+=len(bert_tokens)
            if len(sentence_text_list)>max_len:
                max_len=len(sentence_text_list)
            if len(bert_tokens)>=maxT:
                over_num+=1

            x_index.append(token_result['input_ids'])
            if self.model_type in {"gpt2", "roberta"}:
                x_seg.append([0]*len(token_result['input_ids']))
            else:
                x_seg.append(token_result['token_type_ids'])
            x_mask.append(token_result['attention_mask'])

            #print('label:',label_list)
            label_list,bert_text_label=self.generate_label_list(bert_tokens,label_list,word_index)
            #print('\nlabel list:',label_list)
            #print('\nbert_text_label:',bert_text_label)
            #sys.exit()
            y_list.append(label_list)
            #print(y_list)
            bert_text_labels.append(bert_text_label)

        
        x1_np = pad_sequences(x_index, word_max_len, value=0, padding='post',truncating='post')  # right padding
        x2_np = pad_sequences(x_seg, word_max_len, value=0, padding='post',truncating='post')
        x3_np = pad_sequences(x_mask, word_max_len, value=0, padding='post',truncating='post')
        y_np = pad_sequences(y_list, word_max_len, value=0, padding='post',truncating='post')
        
        # print('bert max len:',max_len,',Over',maxT,':',over_num,'ave len:',ave_len/len(instances),'total:',len(instances))
        if label_type=='onehot': 
            y_np = np.eye(len(labels), dtype='float32')[y_np]
        elif label_type=='softmax':
            y_np = np.expand_dims(y_np, 2)
        elif label_type=='crf':
            pass
        
        
        return [x1_np, x2_np,x3_np], y_np,bert_text_labels  


if __name__ == '__main__':
    pass