File size: 6,889 Bytes
d5062c8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
# -*- coding: utf-8 -*-
"""
Created on Tue Mar 10 16:34:12 2020

@author: luol2
"""
import numpy as np
import io
import sys
#read ner text (word\tlabel), generate the list[[[w1,label],[w2,label]]]
def ml_intext(file):
    fin=open(file,'r',encoding='utf-8')
    alltexts=fin.read().strip().split('\n\n')
    fin.close()
    data_list=[]
    label_list=[]

    for sents in alltexts:
        lines=sents.split('\n')
        temp_sentece=[]
        for i in range(0,len(lines)):
            seg=lines[i].split('\t')
            temp_sentece.append(seg[:])
            label_list.append(seg[-1])
        
        data_list.append(temp_sentece)
    #print(data_list)
    #print(label_list)
    return data_list,label_list

def ml_intext_fn(alltexts):
    # fin=io.StringIO(ml_input)
    # alltexts=fin.read().strip().split('\n\n')
    # fin.close()
    data_list=[]
    label_list=[]

    for sents in alltexts:
        lines=sents.split('\n')
        temp_sentece=[]
        for i in range(0,len(lines)):
            seg=lines[i].split('\t')
            temp_sentece.append(seg[:])
            label_list.append(seg[-1])
        
        data_list.append(temp_sentece)
    #print(data_list)
    #print(label_list)
    return data_list,label_list

# model predict result to conll evalute format  [token answer predict]        
def out_BIO(file,raw_pre,raw_input,label_set):
    fout=open(file,'w',encoding='utf-8')
    for i in range(len(raw_input)):
        
        for j in range(len(raw_input[i])):
            if j<len(raw_pre[i]):
                label_id = raw_pre[i][j]
                label_tag = label_set[str(label_id)]
            else:
                label_tag='O'
            fout.write(raw_input[i][j][0]+'\t'+raw_input[i][j][-1]+'\t'+label_tag+'\n')
        fout.write('\n')
    fout.close()
    
def out_BIO_softmax(file,raw_pre,raw_input,label_set):
    fout=open(file,'w',encoding='utf-8')
    #print(raw_pre[0:2])
    for i in range(len(raw_input)):
        
        for j in range(len(raw_input[i])):
            if j<len(raw_pre[i]):
                label_id = np.argmax(raw_pre[i][j])
                #print(label_id)
                label_tag = label_set[str(label_id)]
            else:
                label_tag='O'
            fout.write(raw_input[i][j][0]+'\t'+raw_input[i][j][-1]+'\t'+label_tag+'\n')
        fout.write('\n')
    fout.close()
    
def out_BIO_fn(raw_pre,raw_input,label_set):
    fout=io.StringIO()
    for i in range(len(raw_input)):
        
        for j in range(len(raw_input[i])):
            if j<len(raw_pre[i]):
                label_id = raw_pre[i][j] 
                label_tag = label_set[str(label_id)]
            else:
                label_tag='O'
            fout.write(raw_input[i][j][0]+'\t'+raw_input[i][j][-1]+'\t'+label_tag+'\n')
        fout.write('\n')
    return fout.getvalue()  
def out_BIO_BERT_softmax(file,raw_pre,raw_input,label_set):
    fout=open(file,'w',encoding='utf-8')
    for i in range(len(raw_input)):
        
        for j in range(len(raw_input[i])):
            if j<len(raw_pre[i]):
                # label_id = raw_pre[i][j]
                label_id = np.argmax(raw_pre[i][j])
                label_tag = label_set[str(label_id)]
            else:
                label_tag='O'
            fout.write(raw_input[i][j][0]+'\t'+raw_input[i][j][-1]+'\t'+label_tag+'\n')
        fout.write('\n')
    fout.close() 
def out_BIO_BERT(file,raw_pre,raw_input,label_set):
    fout=open(file,'w',encoding='utf-8')
    for i in range(len(raw_input)):
        
        for j in range(len(raw_input[i])):
            if j<len(raw_pre[i]):
                label_id = raw_pre[i][j] 
                label_tag = label_set[str(label_id)]
            else:
                label_tag='O'
            fout.write(raw_input[i][j][0]+'\t'+raw_input[i][j][-1]+'\t'+label_tag+'\n')
        fout.write('\n')
    fout.close() 
def out_BIO_BERT_fn(raw_pre,raw_input,label_set):
    fout=io.StringIO()
    for i in range(len(raw_input)):
        
        for j in range(len(raw_input[i])):
            if j<len(raw_pre[i]):
                label_id = raw_pre[i][j] 
                label_tag = label_set[str(label_id)]
            else:
                label_tag='O'
            fout.write(raw_input[i][j][0]+'\t'+raw_input[i][j][-1]+'\t'+label_tag+'\n')
        fout.write('\n')
    return fout.getvalue()                  
def out_BIO_BERT_softmax_fn(raw_pre,raw_input,label_set):
    fout=io.StringIO()
    for i in range(len(raw_input)):

        for j in range(len(raw_input[i])):
            if j<len(raw_pre[i]):
                #label_id = raw_pre[i][j]
                label_id = np.argmax(raw_pre[i][j])
                label_tag = label_set[str(label_id)]
            else:
                label_tag='O'
            fout.write(raw_input[i][j][0]+'\t'+raw_input[i][j][-1]+'\t'+label_tag+'\n')
        fout.write('\n')
    return fout.getvalue()
def out_BIO_BERT_softmax_score_fn(raw_pre,raw_input,label_set):
    fout=io.StringIO()
    for i in range(len(raw_input)):

        for j in range(len(raw_input[i])):
            if j<len(raw_pre[i]):
                #label_id = raw_pre[i][j]
                label_id = np.argmax(raw_pre[i][j])
                label_score = round(raw_pre[i][j][label_id],4)
                label_tag = label_set[str(label_id)]
            else:
                label_tag='O'
                label_score = 0.0
            fout.write(raw_input[i][j][0]+'\t'+raw_input[i][j][-1]+'\t'+label_tag+'\t'+str(label_score)+'\n')
        fout.write('\n')
    return fout.getvalue()
#generate char vocab
def char_vocab(infile,outfile_char):
    fin=open(infile,'r',encoding='utf-8')
    #fout=open(outfile,'w',encoding='utf-8')
    fout_char=open(outfile_char,'w',encoding='utf-8')
    char_vocab=['oov_char']
    max_len=0
    for line in fin:
        if line.strip()!='':
            seg=line.split('\t')
            word_len=len(seg[0])
            #if word_len<1000:
            #    fout.write(line)
            if word_len>max_len:
                max_len=word_len
                print(seg[0])
            for i in range(word_len):
                if seg[0][i] not in char_vocab:
                    char_vocab.append(seg[0][i])
        #else:
        #    fout.write(line)
    fin.close()
    #fout.close()
    for ele in char_vocab:
        fout_char.write(ele+'\n')
    fout_char.close()
    print('max_len:',max_len)


if __name__=='__main__':
    # infile='//panfs/pan1/bionlp/lulab/luoling/HPO_project/AutoPhe/data/pubmed_unlabel/mutation_disease_1990.ner_BIO'
    # #outfile='//panfs/pan1/bionlp/lulab/luoling/HPO_project/AutoPhe/data/pubmed_unlabel/mutation_disease_1990.ner_BIO_new'
    # outfile_char='//panfs/pan1/bionlp/lulab/luoling/HPO_project/AutoPhe/src/nn_model/vocab/char_vocab'
    # #processing_text(file)
    # char_vocab(infile,outfile_char)
    a=[1,2,3]
    print(a[:-1])