File size: 20,587 Bytes
d5062c8 69fb171 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 |
# -*- coding: utf-8 -*-
import sys
import io
import stanza
# nlp = stanza.Pipeline(lang='en', processors='tokenize,mwt,pos,lemma',package='craft') #package='craft'
nlp = stanza.Pipeline(lang='en', processors={'tokenize': 'spacy'},package='None') #package='craft'
REL_ENT={'arg1':'Species',
'arg2':'Gene'}
ENTITY_TAG={'arg1':['arg1s','arg1e'],
'arg2':['arg2s','arg2e'],
'gene':['gene1s','gene1e'],
'species':['species1s','species1e']
}
# ssplit token and revise index
def ssplit_token(infile):
fin=open(infile,'r',encoding='utf-8')
fout=io.StringIO()
all_in=fin.read().strip().split('\n\n')
fin.close()
for doc_text in all_in:
lines=doc_text.split('\n')
ori_text=lines[0].split('|t|')[1]+' '+lines[1].split('|a|')[1]
pmid=lines[0].split('|t|')[0]
# print(pmid)
entity_all=[] #[[seg0,seg1,...,],[]]
for i in range(2,len(lines)):
seg=lines[i].split('\t')
entity_all.append(seg)
#ssplit token
doc_stanza = nlp(ori_text)
token_text=''
for sent in doc_stanza.sentences:
for word in sent.words:
if word.text==' ':
pass
# print('token is blank!')
else:
token_text+=word.text+' '
#token_text=token_text+' ' #sentence split by four blank
#ori_index map token_index
index_map=[-1]*len(ori_text)
j=0
space_list=[' ',chr(160),chr(8201),chr(8194),chr(8197),chr(8202)] #空格有好几种,第一个是常用32,第二个shi 160,8201,8194,8197
for i in range(0,len(ori_text)):
if ori_text[i] in space_list:
pass
elif ori_text[i]==token_text[j]:
#if i>0 and i<285:
# print('=i,j:',i,j,ori_text[i-1:i+1],token_text[j-1:j+1])
index_map[i]=j
j+=1
else:
#if i==283:
# print('!i,j:',i,j,ori_text[i-1:i+1],token_text[j-1:j+1])
j+=1
temp_log=j
try:
while(ori_text[i]!=token_text[j]):
j+=1
except:
print('doc',doc_text)
print('token_text:',token_text)
print('error:',ori_text[i-10:i+10],'i:',ori_text[i],'j:',token_text[temp_log],',',token_text[temp_log-10:temp_log+10])
print(ord(ori_text[i]),ord(' '))
sys.exit()
index_map[i]=j
j+=1
# print(index_map)
# token_text=token_text.replace(' ','<EOS>')
# print(token_text)
fout.write(token_text+'\n')
for ele in entity_all:
if index_map[int(ele[1])]==-1:
new_ents=index_map[int(ele[1])+1]
else:
new_ents=index_map[int(ele[1])]
if index_map[int(ele[2])-1]==-1:
new_ente=index_map[int(ele[2])-1-1]+1
else:
new_ente=index_map[int(ele[2])-1]+1
new_ent=token_text[new_ents:new_ente]
if ele[4]=='Species' or ele[4]=='Gene':
fout.write(ele[0]+'\t'+str(new_ents)+'\t'+str(new_ente)+'\t'+new_ent+'\t'+ele[4]+'\t'+ele[5]+'\n')
else:
# print(ele[4])
fout.write(ele[0]+'\t'+str(new_ents)+'\t'+str(new_ente)+'\t'+new_ent+'\t'+'Gene'+'\t'+ele[5]+'\n')
fout.write('\n')
return fout.getvalue()
def corpus_noNest(token_input):
fin=io.StringIO(token_input)
fout=io.StringIO()
documents=fin.read().strip().split('\n\n')
fin.close()
total_entity=0
over_entity=0
nest_entity=0
for doc in documents:
lines=doc.split('\n')
context=lines[0]
entity_list=[]
if len(lines)>1:
doc_result={}
for i in range(1,len(lines)):
segs=lines[i].split('\t')
doc_result[lines[i]]=[int(segs[1]),int(segs[2])]
doc_result=sorted(doc_result.items(), key=lambda kv:(kv[1]), reverse=False)
doc_result_sort=[]
for ele in doc_result:
doc_result_sort.append(ele[0])
first_entity=doc_result_sort[0].split('\t')
nest_list=[first_entity]
max_eid=int(first_entity[2])
total_entity+=len(lines)-2
for i in range(1,len(doc_result_sort)):
segs=doc_result_sort[i].split('\t')
if int(segs[1])> max_eid:
if len(nest_list)==1:
entity_list.append(nest_list[0])
nest_list=[]
nest_list.append(segs)
if int(segs[2])>max_eid:
max_eid=int(segs[2])
else:
# print(nest_list)
nest_entity+=len(nest_list)-1
tem=find_max_entity(nest_list,context)#find max entity
# if len(tem)>1:
# print('max nest >1:',tem)
entity_list.extend(tem)
nest_list=[]
nest_list.append(segs)
if int(segs[2])>max_eid:
max_eid=int(segs[2])
else:
nest_list.append(segs)
over_entity+=1
if int(segs[2])>max_eid:
max_eid=int(segs[2])
if nest_list!=[]:
if len(nest_list)==1:
entity_list.append(nest_list[0])
else:
tem=find_max_entity(nest_list,context)#find max entity
# if len(tem)>1:
# print('max nest >1:',tem)
entity_list.extend(tem)
fout.write(context+'\n')
for ele in entity_list:
if ele[4]=='Gene':
temp_gene={}
gene_ids=ele[5].split(',')
for gene_id in gene_ids:
temp_id=gene_id[gene_id.find('Species:'):-1]
spe_id=temp_id[len('Species:'):]
temp_gene[temp_id]=int(spe_id)
temp_gene_sort=sorted(temp_gene.items(), key=lambda kv:(kv[1]), reverse=False)
final_gene_id=''
for temp_ele in temp_gene_sort:
final_gene_id+=temp_ele[0]+','
fout.write('\t'.join(ele[:-1])+'\t'+final_gene_id[:-1]+'\n')
else:
fout.write('\t'.join(ele)+'\n')
fout.write('\n')
# print(total_entity,over_entity, nest_entity)
return fout.getvalue()
def find_max_entity(nest_list,text):
max_len=0
final_tem=[]
max_index=0
for i in range(0, len(nest_list)):
if nest_list[i][4] =='Species':
final_tem.append(nest_list[i])
else:
cur_len=int(nest_list[i][2])-int(nest_list[i][1])
if cur_len>max_len:
max_len=cur_len
max_index=i
final_tem.append(nest_list[max_index])
return final_tem
def generate_seq_input(nonest_input,outfile):
fin=io.StringIO(nonest_input)
fout=open(outfile,'w',encoding='utf-8')
all_in=fin.read().strip().split('\n\n')
fin.close()
final_input=[]
for doc in all_in:
lines=doc.split('\n')
token_text=lines[0]
pmid=lines[1].split('\t')[0]
# print(pmid)
#read entity and relation
entity_arg1={} #only entity offset
entity_arg2={} #only entity offset
entity_all=[] #all entity infor
for i in range(1,len(lines)):
seg=lines[i].split('\t')
if seg[4]==REL_ENT['arg1']:
if seg[-1] in entity_arg1.keys():
entity_arg1[seg[-1]].append([seg[1],seg[2]])
else:
entity_arg1[seg[-1]]=[[seg[1],seg[2]]]
elif seg[4]==REL_ENT['arg2']:
temp_spes=seg[-1].split(',')
for ele in temp_spes:
gene_spe_id=ele
if gene_spe_id in entity_arg2.keys():
entity_arg2[gene_spe_id].append([seg[1],seg[2]])
else:
entity_arg2[gene_spe_id]=[[seg[1],seg[2]]]
entity_all.append(seg)
# print('\narg1:',entity_arg1)
# print('\narg2:',entity_arg2)
# print('\nall entity:',entity_all)
# for all arg1 to produce inst
for cur_ele in entity_arg1.keys():
#1. ner label text
#check cur_ele in relation?
# print(relation_all.keys())
if cur_ele in entity_arg2.keys(): #pos instance
rel_ent2=entity_arg2[cur_ele]
ner_text=''
text_sid=0
#print('nonest:',entity_nonest)
for ele_nonest in entity_all:
ent_id=[ele_nonest[1],ele_nonest[2]]
ent_sid=int(ele_nonest[1])
ent_eid=int(ele_nonest[2])
# print('sid,eid:',ent_sid,ent_eid)
ent_text=ele_nonest[3]
ent_type=ele_nonest[4]
if ent_sid>=text_sid:
if ent_id in entity_arg1[cur_ele]:
ner_text+=token_text[text_sid:ent_sid]+' '+ENTITY_TAG['arg1'][0]+' '+ent_text+ ' '+ENTITY_TAG['arg1'][1]+' '
else:
if ent_id in rel_ent2: #arg2 entity
if ent_type!=REL_ENT['arg2']:
pass
# print('arg2 is error! not ',REL_ENT['arg2'], ele_nonest)
ner_text+=token_text[text_sid:ent_sid]+' '+ENTITY_TAG['arg2'][0]+' '+ent_text+ ' '+ENTITY_TAG['arg2'][1]+' '
else:
ner_text+=token_text[text_sid:ent_sid]+' '+ENTITY_TAG[ent_type.lower()][0]+' '+ent_text+ ' '+ENTITY_TAG[ent_type.lower()][1]+' '
text_sid=ent_eid
else:
pass
# print('ner entity error!!!',ele_nonest,text_sid)
ner_text+=token_text[text_sid:]
sen_tokens=ner_text.split()
# print('\nner_text:',ner_text)
#3 produce pos input
temp_input=[]
token_id=0
while token_id <len(sen_tokens):
if sen_tokens[token_id].find(ENTITY_TAG['arg1'][0])>=0:
temp_input.append(ENTITY_TAG['arg1'][0]+'\tO')
token_id+=1
while(sen_tokens[token_id]!=ENTITY_TAG['arg1'][1]):
temp_input.append(sen_tokens[token_id]+'\tO')
token_id+=1
temp_input.append(ENTITY_TAG['arg1'][1]+'\tO')
elif sen_tokens[token_id].find(ENTITY_TAG['arg2'][0])>=0:
temp_input.append(ENTITY_TAG[REL_ENT['arg2'].lower()][0]+'\tARG2')
token_id+=1
while(sen_tokens[token_id]!=ENTITY_TAG['arg2'][1]):
temp_input.append(sen_tokens[token_id]+'\tARG2')
token_id+=1
temp_input.append(ENTITY_TAG[REL_ENT['arg2'].lower()][1]+'\tARG2')
elif sen_tokens[token_id].find(ENTITY_TAG['gene'][0])>=0:
temp_input.append(ENTITY_TAG['gene'][0]+'\tO')
token_id+=1
while(sen_tokens[token_id]!=ENTITY_TAG['gene'][1]):
temp_input.append(sen_tokens[token_id]+'\tO')
token_id+=1
temp_input.append(ENTITY_TAG['gene'][1]+'\tO')
elif sen_tokens[token_id].find(ENTITY_TAG['species'][0])>=0:
temp_input.append(ENTITY_TAG['species'][0]+'\tO')
token_id+=1
while(sen_tokens[token_id]!=ENTITY_TAG['species'][1]):
temp_input.append(sen_tokens[token_id]+'\tO')
token_id+=1
temp_input.append(ENTITY_TAG['species'][1]+'\tO')
else:
if sen_tokens[token_id]=='':
# print('token is none!error!')
pass
else:
temp_input.append(sen_tokens[token_id]+'\tO')
token_id+=1
final_input.append('\n'.join(temp_input))
else: #neg instance
ner_text=''
text_sid=0
#print('nonest:',entity_nonest)
for ele_nonest in entity_all:
ent_id=[ele_nonest[1],ele_nonest[2]]
ent_sid=int(ele_nonest[1])
ent_eid=int(ele_nonest[2])
# print('sid,eid:',ent_sid,ent_eid)
ent_text=ele_nonest[3]
ent_type=ele_nonest[4]
if ent_sid>=text_sid:
if ent_id in entity_arg1[cur_ele]:
ner_text+=token_text[text_sid:ent_sid]+' '+ENTITY_TAG['arg1'][0]+' '+ent_text+ ' '+ENTITY_TAG['arg1'][1]+' '
else:
ner_text+=token_text[text_sid:ent_sid]+' '+ENTITY_TAG[ent_type.lower()][0]+' '+ent_text+ ' '+ENTITY_TAG[ent_type.lower()][1]+' '
text_sid=ent_eid
else:
pass
# print('ner entity error!!!')
ner_text+=token_text[text_sid:]
sen_tokens=ner_text.split()
# print('\nner_text:',ner_text)
# print('ner_Text')
#3 produce NEG input
temp_input=[]
token_id=0
while token_id <len(sen_tokens):
if sen_tokens[token_id].find(ENTITY_TAG['arg1'][0])>=0:
temp_input.append(ENTITY_TAG['arg1'][0]+'\tO')
token_id+=1
while(sen_tokens[token_id]!=ENTITY_TAG['arg1'][1]):
temp_input.append(sen_tokens[token_id]+'\tO')
token_id+=1
temp_input.append(ENTITY_TAG['arg1'][1]+'\tO')
elif sen_tokens[token_id].find(ENTITY_TAG['gene'][0])>=0:
temp_input.append(ENTITY_TAG['gene'][0]+'\tO')
token_id+=1
while(sen_tokens[token_id]!=ENTITY_TAG['gene'][1]):
temp_input.append(sen_tokens[token_id]+'\tO')
token_id+=1
temp_input.append(ENTITY_TAG['gene'][1]+'\tO')
elif sen_tokens[token_id].find(ENTITY_TAG['species'][0])>=0:
temp_input.append(ENTITY_TAG['species'][0]+'\tO')
token_id+=1
while(sen_tokens[token_id]!=ENTITY_TAG['species'][1]):
temp_input.append(sen_tokens[token_id]+'\tO')
token_id+=1
temp_input.append(ENTITY_TAG['species'][1]+'\tO')
else:
if sen_tokens[token_id]=='':
print('token is none!error!')
else:
temp_input.append(sen_tokens[token_id]+'\tO')
token_id+=1
final_input.append('\n'.join(temp_input))
# print(entity_nonest)
# sys.exit()
fout.write('\n\n'.join(final_input))
fout.write('\n')
fout.close()
def check_entity_pos(line,relations):
seg=line.split(' ')
stack_ent=[]
# print(seg)
entity_num={'arg1':0,'arg2':0, 'gene':0,'chemical':0}
temp_arg2=[]
for i in range(0,len(seg)):
if seg[i].find(ENTITY_TAG['gene'][0])>=0:
entity_num['gene']+=1
stack_ent.append(seg[i])
elif seg[i].find(ENTITY_TAG['chemical'][0])>=0:
entity_num['chemical']+=1
stack_ent.append(seg[i])
# print(stack_ent)
elif seg[i].find(ENTITY_TAG['arg1'][0])>=0:
entity_num['arg1']+=1
stack_ent.append(seg[i])
elif seg[i].find(ENTITY_TAG['arg2'][0])>=0:
entity_num['arg2']+=1
temp_arg2.append(seg[i].split('|')[0])
stack_ent.append(seg[i])
elif seg[i].find(ENTITY_TAG['arg1'][1])>=0 or seg[i].find(ENTITY_TAG['arg2'][1])>=0 or seg[i].find(ENTITY_TAG['gene'][1])>=0 or seg[i].find(ENTITY_TAG['chemical'][1])>=0:
stack_ent.pop()
if stack_ent!=[]:
# print('entity no match!',stack_ent)
return(-1,seg,entity_num)
else:
if entity_num['arg1']!=0:
for arg2_id in relations.keys():
if arg2_id not in temp_arg2:
# print('\ntemp_arg2:',temp_arg2)
# print('\narg2_id:',arg2_id)
return(0,seg,entity_num) #some arg2 not in sentence
if entity_num['arg2']!=0 and entity_num['arg1']==0:
return(0,seg,entity_num) #only arg2, but no arg1
return(1,seg,entity_num)
def check_entity_neg(line):
seg=line.split(' ')
stack_ent=[]
# print(seg)
entity_num={'arg1':0,'gene':0,'chemical':0}
for i in range(0,len(seg)):
if seg[i].find(ENTITY_TAG['gene'][0])>=0:
entity_num['gene']+=1
stack_ent.append(seg[i])
elif seg[i].find(ENTITY_TAG['chemical'][0])>=0:
entity_num['chemical']+=1
stack_ent.append(seg[i])
# print(stack_ent)
elif seg[i].find(ENTITY_TAG['arg1'][0])>=0:
entity_num['arg1']+=1
stack_ent.append(seg[i])
elif seg[i].find(ENTITY_TAG['arg1'][1])>=0 or seg[i].find(ENTITY_TAG['gene'][1])>=0 or seg[i].find(ENTITY_TAG['chemical'][1])>=0:
stack_ent.pop()
if stack_ent!=[]:
# print('entity no match!',stack_ent)
return(-1,seg,entity_num)
else:
return(1,seg,entity_num)
def get_one_entity(nest_list,cur_ent,rel_entity2_id):
max_len=0
max_entity=[]
final_entity=[]
for i in range(0, len(nest_list)):
if nest_list[i][1]==cur_ent:#current entity
final_entity=[]
max_entity=nest_list[i]
final_entity.append(nest_list[i])
return(final_entity)
if nest_list[i][1] in rel_entity2_id: #invole rel
final_entity.append(nest_list[i])
continue
length=int(nest_list[i][4])-int(nest_list[i][3])
if max_entity==[]: #first entity
max_len=length
max_entity=nest_list[i]
else:
if length>max_len:
if max_entity[2]==REL_ENT['arg1']:
max_len=length
max_entity=nest_list[i]
else:
if nest_list[i][2]==REL_ENT['arg2'] and max_entity[1] not in rel_entity2_id:
max_len=length
max_entity=nest_list[i]
else:
if nest_list[i][1] in rel_entity2_id:
max_len=length
max_entity=nest_list[i]
elif max_entity[2]==REL_ENT['arg1'] and nest_list[i][2]==REL_ENT['arg2']:
max_len=length
max_entity=nest_list[i]
if final_entity==[]:
final_entity.append(max_entity)
return final_entity
if __name__=='__main__':
infile='../../TrainingSet/No505/SA.Train.txt'
outfile='../../TrainingSet/No505/SA.Train.conll'
#tokenizer
token_input=ssplit_token(infile)
#filter nest entity
nonest_input=corpus_noNest(token_input)
# to conll
generate_seq_input(nonest_input,outfile) |