File size: 19,380 Bytes
d5062c8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
# -*- coding: utf-8 -*-
"""
Created on Fri Mar  5 10:40:08 2021

@author: luol2
"""

# -*- coding: utf-8 -*-
"""
Created on Sun Jun 14 17:19:02 2020

@author: luol2
"""

import io
import sys

# from BIO format to entity,list line is sentence, follwing the entity(start, end, text, entity, type)
def NN_BIO_tag_entity(pre_BIO):
    sentences=pre_BIO.strip().split('\n\n')

    pre_result=[]
    #print(sentences)
    for sent in sentences:
        tokens=sent.split('\n')
        pre_entity=[]
        pre_start,pre_end=0,0
        sent_text=''
        for i in range(0,len(tokens)):
            segs=tokens[i].split('\t')
            sent_text+=segs[0]+' '
            if len(segs)<3:
                continue
            #print(tokens)
            # generate prediction entity            
            if segs[2].startswith('B-')>0:
                pre_start=i
                pre_type=segs[2][2:]
                if i+1>=len(tokens): # the last word
                    pre_end=i
                    pre_entity.append([pre_start,pre_end,pre_type])
                else: # non last word
                    next_seg=tokens[i+1].split('\t')
                    if next_seg[2].startswith('B-')>0 or next_seg[2]=='O':
                        pre_end=i
                        pre_entity.append([pre_start,pre_end,pre_type])
                    elif next_seg[2].startswith('I-')>0:
                        pass
            elif segs[2].startswith('I-')>0:
                if i==0 and i+1<len(tokens): # the first word and not only a word
                    pre_start=i
                    pre_type=segs[2][2:]
                    next_seg=tokens[i+1].split('\t')
                    if next_seg[2].startswith('B-')>0 or next_seg[2]=='O':
                        pre_end=i
                        pre_entity.append([pre_start,pre_end,pre_type])
                    elif next_seg[2].startswith('I-')>0:
                        pass
                elif i==0 and i+1==len(tokens):# only one word:
                    pre_start=i
                    pre_type=segs[2][2:]
                    pre_end=i
                    pre_entity.append([pre_start,pre_end,pre_type])
                elif i+1>=len(tokens): # the last word
                    last_seg=tokens[i-1].split('\t')
                    if last_seg[2]=='O':
                        pre_start=i
                        pre_type=segs[2][2:]                
                    pre_end=i
                    pre_entity.append([pre_start,pre_end,pre_type])
                elif i+1< len(tokens): # non last word
                    next_seg=tokens[i+1].split('\t')
                    last_seg=tokens[i-1].split('\t')
                    if last_seg[2]=='O':
                        pre_start=i
                        pre_type=segs[2][2:]  
                    if next_seg[2].startswith('B-')>0 or next_seg[2]=='O':
                        pre_end=i
                        pre_entity.append([pre_start,pre_end,pre_type])
                    elif next_seg[2].startswith('I-')>0:
                        pass
            elif segs[2]=='O':
                pass        
        pre_result.append([sent_text.rstrip(),pre_entity])


        # print(pre_entity)
    return pre_result

def NN_restore_index_fn(ori_text,file_pre):

    input_result=NN_BIO_tag_entity(file_pre)
    #print(input_result)
    
    
    new_sentence=''
    restore_result=[]
    
    sentence_ori=ori_text.lower()

    for sent_ele in input_result:

        #print(pre_lines)
#        print(sentence_ori)
        if len(sent_ele[1])>0:
            #print(pre_lines)
            sentence_pre=sent_ele[0].lower()
            sentence_pre=sentence_pre.split()
            
            pre_result=sent_ele[1]

            
            restore_sid=0
            restore_eid=0
            each_word_id=[]
            
            for i in range(0,len(sentence_pre)):

                temp_id=sentence_ori.find(sentence_pre[i])
                if temp_id<0:
                        #print('ori:',sentence_ori)
                        print('resotr index error:',sentence_pre[i])
                new_sentence+=sentence_ori[0:temp_id]
                
                restore_sid=len(new_sentence)
                restore_eid=len(new_sentence)+len(sentence_pre[i])
                each_word_id.append([str(restore_sid),str(restore_eid)])
                new_sentence+=sentence_ori[temp_id:temp_id+len(sentence_pre[i])]
                sentence_ori=sentence_ori[temp_id+len(sentence_pre[i]):]
#            print('each_word:',each_word_id)    
            for pre_ele in pre_result:
                temp_pre_result=[each_word_id[int(pre_ele[0])][0],each_word_id[int(pre_ele[1])][1],pre_ele[2]]
                if temp_pre_result not in restore_result:
                    restore_result.append(temp_pre_result)
        else:
            sentence_pre=sent_ele[0].lower()
            sentence_pre=sentence_pre.split()
           
            for i in range(0,len(sentence_pre)):

                temp_id=sentence_ori.find(sentence_pre[i])
                if temp_id<0:
                    print('resotr index error:',sentence_pre[i])
                new_sentence+=sentence_ori[0:temp_id]
                new_sentence+=sentence_ori[temp_id:temp_id+len(sentence_pre[i])]
                sentence_ori=sentence_ori[temp_id+len(sentence_pre[i]):]
    #print('resotre:',restore_result)
    return restore_result

def BERT_BIO_tag_entity(pre_BIO):
    sentences=pre_BIO.strip().split('\n\n')

    pre_result=[]
    for sent in sentences:
        tokens=sent.split('\n')
        pre_entity=[]
        pre_start,pre_end=0,0
        sent_text=''
        for i in range(1,len(tokens)-1):
            segs=tokens[i].split('\t')
            sent_text+=segs[0]+' '
            # generate prediction entity            
            if segs[2].startswith('B-')>0:
                pre_start=i
                pre_type=segs[2][2:]
                if i+1>=len(tokens): # the last word
                    pre_end=i
                    pre_entity.append([pre_start-1,pre_end-1,pre_type])
                else: # non last word
                    next_seg=tokens[i+1].split('\t')
                    if next_seg[2].startswith('B-')>0 or next_seg[2]=='O':
                        pre_end=i
                        pre_entity.append([pre_start-1,pre_end-1,pre_type])
                    elif next_seg[2].startswith('I-')>0:
                        pass
            elif segs[2].startswith('I-')>0:
                if i==0 and i+1<len(tokens): # the first word and not only a word
                    pre_start=i
                    pre_type=segs[2][2:]
                    next_seg=tokens[i+1].split('\t')
                    if next_seg[2].startswith('B-')>0 or next_seg[2]=='O':
                        pre_end=i
                        pre_entity.append([pre_start-1,pre_end-1,pre_type])
                    elif next_seg[2].startswith('I-')>0:
                        pass
                elif i==0 and i+1==len(tokens):# only one word:
                    pre_start=i
                    pre_type=segs[2][2:]
                    pre_end=i
                    pre_entity.append([pre_start-1,pre_end-1,pre_type])
                elif i+1>=len(tokens): # the last word
                    last_seg=tokens[i-1].split('\t')
                    if last_seg[2]=='O':
                        pre_start=i
                        pre_type=segs[2][2:]                
                    pre_end=i
                    pre_entity.append([pre_start-1,pre_end-1,pre_type])
                elif i+1< len(tokens): # non last word
                    next_seg=tokens[i+1].split('\t')
                    last_seg=tokens[i-1].split('\t')
                    if last_seg[2]=='O':
                        pre_start=i
                        pre_type=segs[2][2:]  
                    if next_seg[2].startswith('B-')>0 or next_seg[2]=='O':
                        pre_end=i
                        pre_entity.append([pre_start-1,pre_end-1,pre_type])
                    elif next_seg[2].startswith('I-')>0:
                        pass
            elif segs[2]=='O':
                pass        
        pre_result.append([sent_text.rstrip(),pre_entity])


    #print(pre_result)
    return pre_result

def BERT_BIO_tag_entity_revised(pre_BIO):
    print('revised version')
    sentences=pre_BIO.strip().split('\n\n')

    pre_result=[]
    for sent in sentences:
        tokens=sent.split('\n')
        pre_entity=[]
        pre_start,pre_end=0,0
        sent_text=''
        for i in range(1,len(tokens)-1):
            segs=tokens[i].split('\t')
            sent_text+=segs[0]+' '
            # generate prediction entity            
            if segs[2].startswith('B-')>0:
                pre_start=i
                pre_type=segs[2][2:]
                if i+1>=len(tokens)-1: # the last word
                    pre_end=i
                    pre_entity.append([pre_start-1,pre_end-1,pre_type])
                else: # non last word
                    next_seg=tokens[i+1].split('\t')
                    if next_seg[2].startswith('B-')>0 or next_seg[2]=='O':
                        pre_end=i
                        pre_entity.append([pre_start-1,pre_end-1,pre_type])
                    elif next_seg[2].startswith('I-')>0:
                        pass
            elif segs[2].startswith('I-')>0:
                if i==1 and i+1<len(tokens)-1: # the first word and not only a word
                    pre_start=i
                    pre_type=segs[2][2:]
                    next_seg=tokens[i+1].split('\t')
                    if next_seg[2].startswith('B-')>0 or next_seg[2]=='O':
                        pre_end=i
                        pre_entity.append([pre_start-1,pre_end-1,pre_type])
                    elif next_seg[2].startswith('I-')>0:
                        pass
                elif i==1 and i+1==len(tokens)-1:# only one word:
                    pre_start=i
                    pre_type=segs[2][2:]
                    pre_end=i
                    pre_entity.append([pre_start-1,pre_end-1,pre_type])
                elif i+1>=len(tokens)-1: # the last word
                    last_seg=tokens[i-1].split('\t')
                    if last_seg[2]=='O':
                        pre_start=i
                        pre_type=segs[2][2:]                
                    pre_end=i
                    pre_entity.append([pre_start-1,pre_end-1,pre_type])
                elif i+1< len(tokens)-1: # non last word
                    next_seg=tokens[i+1].split('\t')
                    last_seg=tokens[i-1].split('\t')
                    if last_seg[2]=='O':
                        pre_start=i
                        pre_type=segs[2][2:]  
                    if next_seg[2].startswith('B-')>0 or next_seg[2]=='O':
                        pre_end=i
                        pre_entity.append([pre_start-1,pre_end-1,pre_type])
                    elif next_seg[2].startswith('I-')>0:
                        pass
            elif segs[2]=='O':
                pass        
        pre_result.append([sent_text.rstrip(),pre_entity])


    #print(pre_result)
    return pre_result

# only predict on the first token of the ori word 
def BERT_BIO_tag_entity_word(pre_BIO):
    sentences=pre_BIO.strip().split('\n\n')

    pre_result=[]
    for sent in sentences:
        tokens=sent.split('\n')
        pre_entity=[]
        pre_start,pre_end=0,0
        sent_text=''
        i=1
        while i< len(tokens)-1:
        # for i in range(1,len(tokens)-1):
            segs=tokens[i].split('\t')
            sent_text+=segs[0]+' '
            # generate prediction entity            
            if segs[2].startswith('B-')>0:
                pre_start=i
                pre_type=segs[2][2:]
                if i+1>=len(tokens)-1: # the last word
                    pre_end=i
                    pre_entity.append([pre_start-1,pre_end-1,pre_type])
                else: # non last word
                    #pass a word
                    sub_segs=tokens[i+1].split('\t')
                    while(sub_segs[0].find('##')==0):
                        i+=1
                        sent_text+=sub_segs[0]+' '
                        sub_segs=tokens[i+1].split('\t')
                        
                        
                    next_seg=tokens[i+1].split('\t')
                    if next_seg[2].startswith('B-')>0 or next_seg[2]=='O':
                        pre_end=i
                        pre_entity.append([pre_start-1,pre_end-1,pre_type])
                    elif next_seg[2].startswith('I-')>0:
                        pass
            elif segs[2].startswith('I-')>0:
                if i==1 and i+1<len(tokens)-1: # the first word and not only a word
                    pre_start=i
                    pre_type=segs[2][2:]
                    #pass a word
                    sub_segs=tokens[i+1].split('\t')
                    while(sub_segs[0].find('##')==0):
                        i+=1
                        sent_text+=sub_segs[0]+' '
                        sub_segs=tokens[i+1].split('\t')
                    
                    next_seg=tokens[i+1].split('\t')
                    if next_seg[2].startswith('B-')>0 or next_seg[2]=='O':
                        pre_end=i
                        pre_entity.append([pre_start-1,pre_end-1,pre_type])
                    elif next_seg[2].startswith('I-')>0:
                        pass
                elif i==1 and i+1==len(tokens)-1:# only one word:
                    pre_start=i
                    pre_type=segs[2][2:]
                    pre_end=i
                    pre_entity.append([pre_start-1,pre_end-1,pre_type])
                elif i+1>=len(tokens)-1: # the last word
                    last_seg=tokens[i-1].split('\t')
                    if last_seg[2]=='O':
                        pre_start=i
                        pre_type=segs[2][2:]                
                    pre_end=i
                    pre_entity.append([pre_start-1,pre_end-1,pre_type])
                elif i+1< len(tokens)-1: # non last word
                    
                    last_seg=tokens[i-1].split('\t')
                    if last_seg[2]=='O':
                        pre_start=i
                        pre_type=segs[2][2:]
                        #pass a word
                        sub_segs=tokens[i+1].split('\t')
                        while(sub_segs[0].find('##')==0):
                            i+=1
                            sent_text+=sub_segs[0]+' '
                            sub_segs=tokens[i+1].split('\t')
                    next_seg=tokens[i+1].split('\t')
                    if next_seg[2].startswith('B-')>0 or next_seg[2]=='O':
                        pre_end=i
                        pre_entity.append([pre_start-1,pre_end-1,pre_type])
                    elif next_seg[2].startswith('I-')>0:
                        pass
            elif segs[2]=='O':
                pass
            i+=1
        pre_result.append([sent_text.rstrip(),pre_entity])


    #print(pre_result)
    return pre_result


def BERT_restore_index_fn(ori_text,file_pre):

    # input_result=BERT_BIO_tag_entity_revised(file_pre)
    input_result=BERT_BIO_tag_entity_word(file_pre)
    #print(input_result)
    
    
    new_sentence=''
    restore_result=[]
    
    sentence_ori=ori_text.lower()

    for sent_ele in input_result:

        #print(pre_lines)
#        print(sentence_ori)
        if len(sent_ele[1])>0:
            #print(pre_lines)
            sentence_pre=sent_ele[0].lower()
            sentence_pre=sentence_pre.split()
            
            pre_result=sent_ele[1]

            
            restore_sid=0
            restore_eid=0
            each_word_id=[]
            
            
            for i in range(0,len(sentence_pre)):
                if sentence_pre[i][0:2]=="##":
                    sentence_pre[i]=sentence_pre[i][2:]
                temp_id=sentence_ori.find(sentence_pre[i])
                if temp_id<0:
                        #print('ori:',sentence_ori)
                        print('resotr index error:',sentence_pre[i])
                new_sentence+=sentence_ori[0:temp_id]
                
                restore_sid=len(new_sentence)
                restore_eid=len(new_sentence)+len(sentence_pre[i])
                each_word_id.append([str(restore_sid),str(restore_eid)])
                new_sentence+=sentence_ori[temp_id:temp_id+len(sentence_pre[i])]
                sentence_ori=sentence_ori[temp_id+len(sentence_pre[i]):]
#            print('each_word:',each_word_id)    
            for pre_ele in pre_result:
                temp_pre_result=[each_word_id[int(pre_ele[0])][0],each_word_id[int(pre_ele[1])][1],pre_ele[2]]
                if temp_pre_result not in restore_result:
                    restore_result.append(temp_pre_result)
        else:
            sentence_pre=sent_ele[0].lower()
            sentence_pre=sentence_pre.split()
           
            for i in range(0,len(sentence_pre)):
                if sentence_pre[i][0:2]=="##":
                    sentence_pre[i]=sentence_pre[i][2:]
                temp_id=sentence_ori.find(sentence_pre[i])
                if temp_id<0:
                    print('resotr index error:',sentence_pre[i])
                new_sentence+=sentence_ori[0:temp_id]
                new_sentence+=sentence_ori[temp_id:temp_id+len(sentence_pre[i])]
                sentence_ori=sentence_ori[temp_id+len(sentence_pre[i]):]
    #print('resotre:',restore_result)
    return restore_result
if __name__=='__main__':
    path='//panfs/pan1/bionlp/lulab/luoling/OpenBioIE_project/models/'
    fin=open(path+'devout_test.txt','r',encoding='utf-8')
    file_pre=fin.read()
    ori_text="D90A-SOD1 mediated amyotrophic lateral sclerosis: a single founder for all cases with evidence for a Cis-acting disease modifier in the recessive haplotype. More than 100 different heterozygous mutations in copper/zinc superoxide dismutase (SOD1) have been found in patients with amyotrophic lateral sclerosis (ALS), a fatal neurodegenerative disease. Uniquely, D90A-SOD1 has been identified in recessive, dominant and apparently sporadic pedigrees. The phenotype of homozygotes is stereotyped with an extended survival, whereas that of affected heterozygotes varies. The frequency of D90A-SOD1 is 50 times higher in Scandinavia (2.5%) than elsewhere, though ALS prevalence is not raised there. Our earlier study indicated separate founders for recessive and dominant/sporadic ALS and we proposed a disease-modifying factor linked to the recessive mutation. Here we have doubled our sample set and employed novel markers to characterise the mutation's origin and localise any modifying factor. Linkage disequilibrium analysis indicates that D90A homozygotes and heterozygotes share a rare haplotype and are all descended from a single ancient founder (alpha 0.974) c.895 generations ago. Homozygotes arose subsequently only c.63 generations ago (alpha 0.878). Recombination has reduced the region shared by recessive kindreds to 97-265 kb around SOD1, excluding all neighbouring genes. We propose that a cis-acting regulatory polymorphism has arisen close to D90A-SOD1 in the recessive founder, which decreases ALS susceptibility in heterozygotes and slows disease progression."
    NN_restore_index_fn(ori_text,file_pre)