File size: 19,380 Bytes
d5062c8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 |
# -*- coding: utf-8 -*-
"""
Created on Fri Mar 5 10:40:08 2021
@author: luol2
"""
# -*- coding: utf-8 -*-
"""
Created on Sun Jun 14 17:19:02 2020
@author: luol2
"""
import io
import sys
# from BIO format to entity,list line is sentence, follwing the entity(start, end, text, entity, type)
def NN_BIO_tag_entity(pre_BIO):
sentences=pre_BIO.strip().split('\n\n')
pre_result=[]
#print(sentences)
for sent in sentences:
tokens=sent.split('\n')
pre_entity=[]
pre_start,pre_end=0,0
sent_text=''
for i in range(0,len(tokens)):
segs=tokens[i].split('\t')
sent_text+=segs[0]+' '
if len(segs)<3:
continue
#print(tokens)
# generate prediction entity
if segs[2].startswith('B-')>0:
pre_start=i
pre_type=segs[2][2:]
if i+1>=len(tokens): # the last word
pre_end=i
pre_entity.append([pre_start,pre_end,pre_type])
else: # non last word
next_seg=tokens[i+1].split('\t')
if next_seg[2].startswith('B-')>0 or next_seg[2]=='O':
pre_end=i
pre_entity.append([pre_start,pre_end,pre_type])
elif next_seg[2].startswith('I-')>0:
pass
elif segs[2].startswith('I-')>0:
if i==0 and i+1<len(tokens): # the first word and not only a word
pre_start=i
pre_type=segs[2][2:]
next_seg=tokens[i+1].split('\t')
if next_seg[2].startswith('B-')>0 or next_seg[2]=='O':
pre_end=i
pre_entity.append([pre_start,pre_end,pre_type])
elif next_seg[2].startswith('I-')>0:
pass
elif i==0 and i+1==len(tokens):# only one word:
pre_start=i
pre_type=segs[2][2:]
pre_end=i
pre_entity.append([pre_start,pre_end,pre_type])
elif i+1>=len(tokens): # the last word
last_seg=tokens[i-1].split('\t')
if last_seg[2]=='O':
pre_start=i
pre_type=segs[2][2:]
pre_end=i
pre_entity.append([pre_start,pre_end,pre_type])
elif i+1< len(tokens): # non last word
next_seg=tokens[i+1].split('\t')
last_seg=tokens[i-1].split('\t')
if last_seg[2]=='O':
pre_start=i
pre_type=segs[2][2:]
if next_seg[2].startswith('B-')>0 or next_seg[2]=='O':
pre_end=i
pre_entity.append([pre_start,pre_end,pre_type])
elif next_seg[2].startswith('I-')>0:
pass
elif segs[2]=='O':
pass
pre_result.append([sent_text.rstrip(),pre_entity])
# print(pre_entity)
return pre_result
def NN_restore_index_fn(ori_text,file_pre):
input_result=NN_BIO_tag_entity(file_pre)
#print(input_result)
new_sentence=''
restore_result=[]
sentence_ori=ori_text.lower()
for sent_ele in input_result:
#print(pre_lines)
# print(sentence_ori)
if len(sent_ele[1])>0:
#print(pre_lines)
sentence_pre=sent_ele[0].lower()
sentence_pre=sentence_pre.split()
pre_result=sent_ele[1]
restore_sid=0
restore_eid=0
each_word_id=[]
for i in range(0,len(sentence_pre)):
temp_id=sentence_ori.find(sentence_pre[i])
if temp_id<0:
#print('ori:',sentence_ori)
print('resotr index error:',sentence_pre[i])
new_sentence+=sentence_ori[0:temp_id]
restore_sid=len(new_sentence)
restore_eid=len(new_sentence)+len(sentence_pre[i])
each_word_id.append([str(restore_sid),str(restore_eid)])
new_sentence+=sentence_ori[temp_id:temp_id+len(sentence_pre[i])]
sentence_ori=sentence_ori[temp_id+len(sentence_pre[i]):]
# print('each_word:',each_word_id)
for pre_ele in pre_result:
temp_pre_result=[each_word_id[int(pre_ele[0])][0],each_word_id[int(pre_ele[1])][1],pre_ele[2]]
if temp_pre_result not in restore_result:
restore_result.append(temp_pre_result)
else:
sentence_pre=sent_ele[0].lower()
sentence_pre=sentence_pre.split()
for i in range(0,len(sentence_pre)):
temp_id=sentence_ori.find(sentence_pre[i])
if temp_id<0:
print('resotr index error:',sentence_pre[i])
new_sentence+=sentence_ori[0:temp_id]
new_sentence+=sentence_ori[temp_id:temp_id+len(sentence_pre[i])]
sentence_ori=sentence_ori[temp_id+len(sentence_pre[i]):]
#print('resotre:',restore_result)
return restore_result
def BERT_BIO_tag_entity(pre_BIO):
sentences=pre_BIO.strip().split('\n\n')
pre_result=[]
for sent in sentences:
tokens=sent.split('\n')
pre_entity=[]
pre_start,pre_end=0,0
sent_text=''
for i in range(1,len(tokens)-1):
segs=tokens[i].split('\t')
sent_text+=segs[0]+' '
# generate prediction entity
if segs[2].startswith('B-')>0:
pre_start=i
pre_type=segs[2][2:]
if i+1>=len(tokens): # the last word
pre_end=i
pre_entity.append([pre_start-1,pre_end-1,pre_type])
else: # non last word
next_seg=tokens[i+1].split('\t')
if next_seg[2].startswith('B-')>0 or next_seg[2]=='O':
pre_end=i
pre_entity.append([pre_start-1,pre_end-1,pre_type])
elif next_seg[2].startswith('I-')>0:
pass
elif segs[2].startswith('I-')>0:
if i==0 and i+1<len(tokens): # the first word and not only a word
pre_start=i
pre_type=segs[2][2:]
next_seg=tokens[i+1].split('\t')
if next_seg[2].startswith('B-')>0 or next_seg[2]=='O':
pre_end=i
pre_entity.append([pre_start-1,pre_end-1,pre_type])
elif next_seg[2].startswith('I-')>0:
pass
elif i==0 and i+1==len(tokens):# only one word:
pre_start=i
pre_type=segs[2][2:]
pre_end=i
pre_entity.append([pre_start-1,pre_end-1,pre_type])
elif i+1>=len(tokens): # the last word
last_seg=tokens[i-1].split('\t')
if last_seg[2]=='O':
pre_start=i
pre_type=segs[2][2:]
pre_end=i
pre_entity.append([pre_start-1,pre_end-1,pre_type])
elif i+1< len(tokens): # non last word
next_seg=tokens[i+1].split('\t')
last_seg=tokens[i-1].split('\t')
if last_seg[2]=='O':
pre_start=i
pre_type=segs[2][2:]
if next_seg[2].startswith('B-')>0 or next_seg[2]=='O':
pre_end=i
pre_entity.append([pre_start-1,pre_end-1,pre_type])
elif next_seg[2].startswith('I-')>0:
pass
elif segs[2]=='O':
pass
pre_result.append([sent_text.rstrip(),pre_entity])
#print(pre_result)
return pre_result
def BERT_BIO_tag_entity_revised(pre_BIO):
print('revised version')
sentences=pre_BIO.strip().split('\n\n')
pre_result=[]
for sent in sentences:
tokens=sent.split('\n')
pre_entity=[]
pre_start,pre_end=0,0
sent_text=''
for i in range(1,len(tokens)-1):
segs=tokens[i].split('\t')
sent_text+=segs[0]+' '
# generate prediction entity
if segs[2].startswith('B-')>0:
pre_start=i
pre_type=segs[2][2:]
if i+1>=len(tokens)-1: # the last word
pre_end=i
pre_entity.append([pre_start-1,pre_end-1,pre_type])
else: # non last word
next_seg=tokens[i+1].split('\t')
if next_seg[2].startswith('B-')>0 or next_seg[2]=='O':
pre_end=i
pre_entity.append([pre_start-1,pre_end-1,pre_type])
elif next_seg[2].startswith('I-')>0:
pass
elif segs[2].startswith('I-')>0:
if i==1 and i+1<len(tokens)-1: # the first word and not only a word
pre_start=i
pre_type=segs[2][2:]
next_seg=tokens[i+1].split('\t')
if next_seg[2].startswith('B-')>0 or next_seg[2]=='O':
pre_end=i
pre_entity.append([pre_start-1,pre_end-1,pre_type])
elif next_seg[2].startswith('I-')>0:
pass
elif i==1 and i+1==len(tokens)-1:# only one word:
pre_start=i
pre_type=segs[2][2:]
pre_end=i
pre_entity.append([pre_start-1,pre_end-1,pre_type])
elif i+1>=len(tokens)-1: # the last word
last_seg=tokens[i-1].split('\t')
if last_seg[2]=='O':
pre_start=i
pre_type=segs[2][2:]
pre_end=i
pre_entity.append([pre_start-1,pre_end-1,pre_type])
elif i+1< len(tokens)-1: # non last word
next_seg=tokens[i+1].split('\t')
last_seg=tokens[i-1].split('\t')
if last_seg[2]=='O':
pre_start=i
pre_type=segs[2][2:]
if next_seg[2].startswith('B-')>0 or next_seg[2]=='O':
pre_end=i
pre_entity.append([pre_start-1,pre_end-1,pre_type])
elif next_seg[2].startswith('I-')>0:
pass
elif segs[2]=='O':
pass
pre_result.append([sent_text.rstrip(),pre_entity])
#print(pre_result)
return pre_result
# only predict on the first token of the ori word
def BERT_BIO_tag_entity_word(pre_BIO):
sentences=pre_BIO.strip().split('\n\n')
pre_result=[]
for sent in sentences:
tokens=sent.split('\n')
pre_entity=[]
pre_start,pre_end=0,0
sent_text=''
i=1
while i< len(tokens)-1:
# for i in range(1,len(tokens)-1):
segs=tokens[i].split('\t')
sent_text+=segs[0]+' '
# generate prediction entity
if segs[2].startswith('B-')>0:
pre_start=i
pre_type=segs[2][2:]
if i+1>=len(tokens)-1: # the last word
pre_end=i
pre_entity.append([pre_start-1,pre_end-1,pre_type])
else: # non last word
#pass a word
sub_segs=tokens[i+1].split('\t')
while(sub_segs[0].find('##')==0):
i+=1
sent_text+=sub_segs[0]+' '
sub_segs=tokens[i+1].split('\t')
next_seg=tokens[i+1].split('\t')
if next_seg[2].startswith('B-')>0 or next_seg[2]=='O':
pre_end=i
pre_entity.append([pre_start-1,pre_end-1,pre_type])
elif next_seg[2].startswith('I-')>0:
pass
elif segs[2].startswith('I-')>0:
if i==1 and i+1<len(tokens)-1: # the first word and not only a word
pre_start=i
pre_type=segs[2][2:]
#pass a word
sub_segs=tokens[i+1].split('\t')
while(sub_segs[0].find('##')==0):
i+=1
sent_text+=sub_segs[0]+' '
sub_segs=tokens[i+1].split('\t')
next_seg=tokens[i+1].split('\t')
if next_seg[2].startswith('B-')>0 or next_seg[2]=='O':
pre_end=i
pre_entity.append([pre_start-1,pre_end-1,pre_type])
elif next_seg[2].startswith('I-')>0:
pass
elif i==1 and i+1==len(tokens)-1:# only one word:
pre_start=i
pre_type=segs[2][2:]
pre_end=i
pre_entity.append([pre_start-1,pre_end-1,pre_type])
elif i+1>=len(tokens)-1: # the last word
last_seg=tokens[i-1].split('\t')
if last_seg[2]=='O':
pre_start=i
pre_type=segs[2][2:]
pre_end=i
pre_entity.append([pre_start-1,pre_end-1,pre_type])
elif i+1< len(tokens)-1: # non last word
last_seg=tokens[i-1].split('\t')
if last_seg[2]=='O':
pre_start=i
pre_type=segs[2][2:]
#pass a word
sub_segs=tokens[i+1].split('\t')
while(sub_segs[0].find('##')==0):
i+=1
sent_text+=sub_segs[0]+' '
sub_segs=tokens[i+1].split('\t')
next_seg=tokens[i+1].split('\t')
if next_seg[2].startswith('B-')>0 or next_seg[2]=='O':
pre_end=i
pre_entity.append([pre_start-1,pre_end-1,pre_type])
elif next_seg[2].startswith('I-')>0:
pass
elif segs[2]=='O':
pass
i+=1
pre_result.append([sent_text.rstrip(),pre_entity])
#print(pre_result)
return pre_result
def BERT_restore_index_fn(ori_text,file_pre):
# input_result=BERT_BIO_tag_entity_revised(file_pre)
input_result=BERT_BIO_tag_entity_word(file_pre)
#print(input_result)
new_sentence=''
restore_result=[]
sentence_ori=ori_text.lower()
for sent_ele in input_result:
#print(pre_lines)
# print(sentence_ori)
if len(sent_ele[1])>0:
#print(pre_lines)
sentence_pre=sent_ele[0].lower()
sentence_pre=sentence_pre.split()
pre_result=sent_ele[1]
restore_sid=0
restore_eid=0
each_word_id=[]
for i in range(0,len(sentence_pre)):
if sentence_pre[i][0:2]=="##":
sentence_pre[i]=sentence_pre[i][2:]
temp_id=sentence_ori.find(sentence_pre[i])
if temp_id<0:
#print('ori:',sentence_ori)
print('resotr index error:',sentence_pre[i])
new_sentence+=sentence_ori[0:temp_id]
restore_sid=len(new_sentence)
restore_eid=len(new_sentence)+len(sentence_pre[i])
each_word_id.append([str(restore_sid),str(restore_eid)])
new_sentence+=sentence_ori[temp_id:temp_id+len(sentence_pre[i])]
sentence_ori=sentence_ori[temp_id+len(sentence_pre[i]):]
# print('each_word:',each_word_id)
for pre_ele in pre_result:
temp_pre_result=[each_word_id[int(pre_ele[0])][0],each_word_id[int(pre_ele[1])][1],pre_ele[2]]
if temp_pre_result not in restore_result:
restore_result.append(temp_pre_result)
else:
sentence_pre=sent_ele[0].lower()
sentence_pre=sentence_pre.split()
for i in range(0,len(sentence_pre)):
if sentence_pre[i][0:2]=="##":
sentence_pre[i]=sentence_pre[i][2:]
temp_id=sentence_ori.find(sentence_pre[i])
if temp_id<0:
print('resotr index error:',sentence_pre[i])
new_sentence+=sentence_ori[0:temp_id]
new_sentence+=sentence_ori[temp_id:temp_id+len(sentence_pre[i])]
sentence_ori=sentence_ori[temp_id+len(sentence_pre[i]):]
#print('resotre:',restore_result)
return restore_result
if __name__=='__main__':
path='//panfs/pan1/bionlp/lulab/luoling/OpenBioIE_project/models/'
fin=open(path+'devout_test.txt','r',encoding='utf-8')
file_pre=fin.read()
ori_text="D90A-SOD1 mediated amyotrophic lateral sclerosis: a single founder for all cases with evidence for a Cis-acting disease modifier in the recessive haplotype. More than 100 different heterozygous mutations in copper/zinc superoxide dismutase (SOD1) have been found in patients with amyotrophic lateral sclerosis (ALS), a fatal neurodegenerative disease. Uniquely, D90A-SOD1 has been identified in recessive, dominant and apparently sporadic pedigrees. The phenotype of homozygotes is stereotyped with an extended survival, whereas that of affected heterozygotes varies. The frequency of D90A-SOD1 is 50 times higher in Scandinavia (2.5%) than elsewhere, though ALS prevalence is not raised there. Our earlier study indicated separate founders for recessive and dominant/sporadic ALS and we proposed a disease-modifying factor linked to the recessive mutation. Here we have doubled our sample set and employed novel markers to characterise the mutation's origin and localise any modifying factor. Linkage disequilibrium analysis indicates that D90A homozygotes and heterozygotes share a rare haplotype and are all descended from a single ancient founder (alpha 0.974) c.895 generations ago. Homozygotes arose subsequently only c.63 generations ago (alpha 0.878). Recombination has reduced the region shared by recessive kindreds to 97-265 kb around SOD1, excluding all neighbouring genes. We propose that a cis-acting regulatory polymorphism has arisen close to D90A-SOD1 in the recessive founder, which decreases ALS susceptibility in heterozygotes and slows disease progression."
NN_restore_index_fn(ori_text,file_pre)
|