File size: 8,674 Bytes
d5062c8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
69fb171
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
# -*- coding: utf-8 -*-
"""
Created on Wed Sep  7 08:58:22 2022

@author: luol2
"""

# -*- coding: utf-8 -*-
"""
Created on Fri Jun 24 11:27:57 2022

@author: luol2
"""


import stanza
import sys
import os
import io
import json
import re
#sort entity by position in text
def pubtator_entitysort(infile):
    
    fin=open(infile,'r',encoding='utf-8')    
    # fout=open(path+'LitCoin/sort/Train_sort.PubTator','w',encoding='utf-8')
    fout=io.StringIO()
    all_in=fin.read().strip().split('\n\n')
    fin.close()
    error_dict={} #use to debug error
    for doc in all_in:
        entity_dict={}
        lines=doc.split('\n')
        fout.write(lines[0]+'\n'+lines[1]+'\n')
        for i in range(2,len(lines)):
            segs=lines[i].split('\t')
            if len(segs)>=5:
                if lines[i] not in entity_dict.keys():
                    entity_dict[lines[i]]=int(segs[1])
                else:
                    print('entity have in',lines[i])
                    if segs[0] not in error_dict.keys():
                        error_dict[segs[0]]=[lines[i]]
                    else:
                        if lines[i] not in error_dict[segs[0]]:
                            error_dict[segs[0]].append(lines[i])

        entity_sort=sorted(entity_dict.items(), key=lambda kv:(kv[1]), reverse=False)
        for ele in entity_sort:
            fout.write(ele[0]+'\n')
        fout.write('\n')
    return fout

def filter_overlap(infile): #nonest

    fin=io.StringIO(infile.getvalue())
    fout=io.StringIO()
    
    documents=fin.read().strip().split('\n\n')
    fin.close()
    total_entity=0
    over_entity=0
    nest_entity=0
    for doc in documents:
        lines=doc.split('\n')
        entity_list=[]
        if len(lines)>2:
            first_entity=lines[2].split('\t')
            nest_list=[first_entity]
            max_eid=int(first_entity[2])
            total_entity+=len(lines)-2
            for i in range(3,len(lines)):
                segs=lines[i].split('\t')
                if int(segs[1])> max_eid:
                    if len(nest_list)==1:
                        entity_list.append(nest_list[0])
                        nest_list=[]
                        nest_list.append(segs)
                        if int(segs[2])>max_eid:
                            max_eid=int(segs[2])
                    else:
                        # print(nest_list)
                        nest_entity+=len(nest_list)-1
                        tem=find_max_entity(nest_list)#find max entity
                        # if len(tem)>1:
                        #     print('max nest >1:',tem)
                        entity_list.extend(tem)
                        nest_list=[]
                        nest_list.append(segs)
                        if int(segs[2])>max_eid:
                            max_eid=int(segs[2])
                        
                else:
                    nest_list.append(segs)
                    if int(segs[2])>max_eid:
                        max_eid=int(segs[2])
            if nest_list!=[]:
                if len(nest_list)==1:
                    entity_list.append(nest_list[0])

                else:
                    tem=find_max_entity(nest_list)#find max entity
                    # if len(tem)>1:
                    #     print('max nest >1:',tem)
                    entity_list.extend(tem)
        fout.write(lines[0]+'\n'+lines[1]+'\n')
        for ele in entity_list:
            fout.write('\t'.join(ele)+'\n')
        fout.write('\n')
    # print(total_entity,over_entity, nest_entity)
    return fout
def find_max_entity(nest_list): #longest entity
    max_len=0
    final_tem=[]
    max_index=0
    for i in range(0, len(nest_list)):
        cur_len=int(nest_list[i][2])-int(nest_list[i][1])
        if cur_len>max_len:
            max_len=cur_len
            max_index=i

    final_tem.append(nest_list[max_index])
    return final_tem    
                
# change ori pubtator format to labeled text , entity begin with " ssss", end with 'eeee '
def pubtator_to_labeltext(infile):
    
    fin=io.StringIO(infile.getvalue())
    all_context=fin.read().strip().split('\n\n')
    fin.close()
    fout=io.StringIO()
    label_dic={}
    
    for doc in all_context:
        lines=doc.split('\n')
        ori_text=lines[0].split('|t|')[1]+' '+lines[1].split('|a|')[1]
        pmid=lines[0].split('|t|')[0]
        s_index=0
        e_index=0
        new_text=''
        for i in range(2,len(lines)):
            segs=lines[i].split('\t')
            label_dic[segs[4].lower()]=segs[4]
            if len(segs)==6:
                e_index=int(segs[1])
                new_text+=ori_text[s_index:e_index]+' ssss'+segs[4].lower()+' '+ori_text[int(segs[1]):int(segs[2])]+' eeee'+segs[4].lower()+' '  
                s_index=int(segs[2])
                # if ori_text[int(segs[1]):int(segs[2])]!=segs[3]:
                #     print('error(ori,label):',ori_text[int(segs[1]):int(segs[2])],segs[3])

        new_text+=ori_text[s_index:] 
        fout.write(pmid+'\t'+' '.join(new_text.strip().split())+'\n')
    return fout, label_dic
  

def pre_token(sentence):
    sentence=re.sub("([\=\/\(\)\<\>\+\-\_])"," \\1 ",sentence)
    sentence=re.sub("[ ]+"," ",sentence);
    return sentence

# labeltext to conll format (BIO), a token (including features) per line. sentences are split by '\n', or docs are split by '\n'
def labeltext_to_conll_fasttoken(infile,label_dic):
    
    fin=io.StringIO(infile.getvalue())
    all_context=fin.read().strip().split('\n')
    fin.close()
    fout=io.StringIO()
    
    # nlp = stanza.Pipeline(lang='en', processors='tokenize',package='craft') #package='craft'
    nlp = stanza.Pipeline(lang='en', processors={'tokenize': 'spacy'},package='None') #package='craft'

    doc_i=0
    for doc in all_context:
        doc_text=doc.split('\t')[1]
        doc_text=pre_token(doc_text)
        doc_stanza = nlp(doc_text)
        doc_i+=1
        #print(doc_i)
        inentity_flag=0
        last_label='O'
        for sent in doc_stanza.sentences:
            temp_sent=[]
            word_num=0
            for word in sent.words:
                word_num+=1
                # print(word.text)
                if word.text.strip()=='':
                    continue
                temp_sent.append(word.text)
                if word.text.startswith('ssss')==True:
                    last_label=word.text
                    inentity_flag=1
                elif word.text.startswith('eeee')==True:
                    last_label=word.text
                    inentity_flag=0                    
                else:
                    if last_label=='O':
                        now_label='O'
                    elif last_label.startswith('ssss')==True:
                        now_label='B-'+label_dic[last_label[4:]]
                        
                    elif last_label.startswith('B-')==True:
                        now_label='I-'+last_label[2:]
                    elif last_label.startswith('I-')==True:
                        now_label='I-'+last_label[2:]    
                    elif last_label.startswith('eeee')==True:
                        now_label='O'
                        
                    fout.write(word.text+'\t'+now_label+'\n')
                    last_label=now_label
            if inentity_flag==1: # if entity is split by sentence, will connate the sentence
                # print('sentence error!!!')
                # print(word.text,word_num)
                # print(temp_sent)
                pass
            else:
                fout.write('\n')
    return fout
        
def pubtator_to_conll(infile):
    
    #1.entity sort 
    input_sort=pubtator_entitysort(infile)
    #print(input_sort.getvalue())
    
    #2. no overlap, if overlap get longest entity
    input_nonest=filter_overlap(input_sort)
    # print('......sort.....\n',input_sort.getvalue())
    
    #3. pubtator to label text
    input_labtext,label_dic=pubtator_to_labeltext(input_nonest)
    # print('......label.....\n',input_labtext.getvalue())
    #print(label_dic)
    
    #4. label text to conll
    output = labeltext_to_conll_fasttoken(input_labtext,label_dic)
    # print('......output.....\n',output.getvalue())
    # fout=open(outfile,'w',encoding='utf-8')
    # fout.write(input_nonest.getvalue())
    # fout.close()
    return output

if __name__=='__main__':
    

    infile='../../TrainingSet/No100/NER.Train.txt'  
    output=pubtator_to_conll(infile)
    fout=open('../../TrainingSet/No100/NER.Train.conll','w',encoding='utf-8')
    fout.write(output.getvalue())
    fout.close()
    output.close()