File size: 8,674 Bytes
d5062c8 69fb171 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 |
# -*- coding: utf-8 -*-
"""
Created on Wed Sep 7 08:58:22 2022
@author: luol2
"""
# -*- coding: utf-8 -*-
"""
Created on Fri Jun 24 11:27:57 2022
@author: luol2
"""
import stanza
import sys
import os
import io
import json
import re
#sort entity by position in text
def pubtator_entitysort(infile):
fin=open(infile,'r',encoding='utf-8')
# fout=open(path+'LitCoin/sort/Train_sort.PubTator','w',encoding='utf-8')
fout=io.StringIO()
all_in=fin.read().strip().split('\n\n')
fin.close()
error_dict={} #use to debug error
for doc in all_in:
entity_dict={}
lines=doc.split('\n')
fout.write(lines[0]+'\n'+lines[1]+'\n')
for i in range(2,len(lines)):
segs=lines[i].split('\t')
if len(segs)>=5:
if lines[i] not in entity_dict.keys():
entity_dict[lines[i]]=int(segs[1])
else:
print('entity have in',lines[i])
if segs[0] not in error_dict.keys():
error_dict[segs[0]]=[lines[i]]
else:
if lines[i] not in error_dict[segs[0]]:
error_dict[segs[0]].append(lines[i])
entity_sort=sorted(entity_dict.items(), key=lambda kv:(kv[1]), reverse=False)
for ele in entity_sort:
fout.write(ele[0]+'\n')
fout.write('\n')
return fout
def filter_overlap(infile): #nonest
fin=io.StringIO(infile.getvalue())
fout=io.StringIO()
documents=fin.read().strip().split('\n\n')
fin.close()
total_entity=0
over_entity=0
nest_entity=0
for doc in documents:
lines=doc.split('\n')
entity_list=[]
if len(lines)>2:
first_entity=lines[2].split('\t')
nest_list=[first_entity]
max_eid=int(first_entity[2])
total_entity+=len(lines)-2
for i in range(3,len(lines)):
segs=lines[i].split('\t')
if int(segs[1])> max_eid:
if len(nest_list)==1:
entity_list.append(nest_list[0])
nest_list=[]
nest_list.append(segs)
if int(segs[2])>max_eid:
max_eid=int(segs[2])
else:
# print(nest_list)
nest_entity+=len(nest_list)-1
tem=find_max_entity(nest_list)#find max entity
# if len(tem)>1:
# print('max nest >1:',tem)
entity_list.extend(tem)
nest_list=[]
nest_list.append(segs)
if int(segs[2])>max_eid:
max_eid=int(segs[2])
else:
nest_list.append(segs)
if int(segs[2])>max_eid:
max_eid=int(segs[2])
if nest_list!=[]:
if len(nest_list)==1:
entity_list.append(nest_list[0])
else:
tem=find_max_entity(nest_list)#find max entity
# if len(tem)>1:
# print('max nest >1:',tem)
entity_list.extend(tem)
fout.write(lines[0]+'\n'+lines[1]+'\n')
for ele in entity_list:
fout.write('\t'.join(ele)+'\n')
fout.write('\n')
# print(total_entity,over_entity, nest_entity)
return fout
def find_max_entity(nest_list): #longest entity
max_len=0
final_tem=[]
max_index=0
for i in range(0, len(nest_list)):
cur_len=int(nest_list[i][2])-int(nest_list[i][1])
if cur_len>max_len:
max_len=cur_len
max_index=i
final_tem.append(nest_list[max_index])
return final_tem
# change ori pubtator format to labeled text , entity begin with " ssss", end with 'eeee '
def pubtator_to_labeltext(infile):
fin=io.StringIO(infile.getvalue())
all_context=fin.read().strip().split('\n\n')
fin.close()
fout=io.StringIO()
label_dic={}
for doc in all_context:
lines=doc.split('\n')
ori_text=lines[0].split('|t|')[1]+' '+lines[1].split('|a|')[1]
pmid=lines[0].split('|t|')[0]
s_index=0
e_index=0
new_text=''
for i in range(2,len(lines)):
segs=lines[i].split('\t')
label_dic[segs[4].lower()]=segs[4]
if len(segs)==6:
e_index=int(segs[1])
new_text+=ori_text[s_index:e_index]+' ssss'+segs[4].lower()+' '+ori_text[int(segs[1]):int(segs[2])]+' eeee'+segs[4].lower()+' '
s_index=int(segs[2])
# if ori_text[int(segs[1]):int(segs[2])]!=segs[3]:
# print('error(ori,label):',ori_text[int(segs[1]):int(segs[2])],segs[3])
new_text+=ori_text[s_index:]
fout.write(pmid+'\t'+' '.join(new_text.strip().split())+'\n')
return fout, label_dic
def pre_token(sentence):
sentence=re.sub("([\=\/\(\)\<\>\+\-\_])"," \\1 ",sentence)
sentence=re.sub("[ ]+"," ",sentence);
return sentence
# labeltext to conll format (BIO), a token (including features) per line. sentences are split by '\n', or docs are split by '\n'
def labeltext_to_conll_fasttoken(infile,label_dic):
fin=io.StringIO(infile.getvalue())
all_context=fin.read().strip().split('\n')
fin.close()
fout=io.StringIO()
# nlp = stanza.Pipeline(lang='en', processors='tokenize',package='craft') #package='craft'
nlp = stanza.Pipeline(lang='en', processors={'tokenize': 'spacy'},package='None') #package='craft'
doc_i=0
for doc in all_context:
doc_text=doc.split('\t')[1]
doc_text=pre_token(doc_text)
doc_stanza = nlp(doc_text)
doc_i+=1
#print(doc_i)
inentity_flag=0
last_label='O'
for sent in doc_stanza.sentences:
temp_sent=[]
word_num=0
for word in sent.words:
word_num+=1
# print(word.text)
if word.text.strip()=='':
continue
temp_sent.append(word.text)
if word.text.startswith('ssss')==True:
last_label=word.text
inentity_flag=1
elif word.text.startswith('eeee')==True:
last_label=word.text
inentity_flag=0
else:
if last_label=='O':
now_label='O'
elif last_label.startswith('ssss')==True:
now_label='B-'+label_dic[last_label[4:]]
elif last_label.startswith('B-')==True:
now_label='I-'+last_label[2:]
elif last_label.startswith('I-')==True:
now_label='I-'+last_label[2:]
elif last_label.startswith('eeee')==True:
now_label='O'
fout.write(word.text+'\t'+now_label+'\n')
last_label=now_label
if inentity_flag==1: # if entity is split by sentence, will connate the sentence
# print('sentence error!!!')
# print(word.text,word_num)
# print(temp_sent)
pass
else:
fout.write('\n')
return fout
def pubtator_to_conll(infile):
#1.entity sort
input_sort=pubtator_entitysort(infile)
#print(input_sort.getvalue())
#2. no overlap, if overlap get longest entity
input_nonest=filter_overlap(input_sort)
# print('......sort.....\n',input_sort.getvalue())
#3. pubtator to label text
input_labtext,label_dic=pubtator_to_labeltext(input_nonest)
# print('......label.....\n',input_labtext.getvalue())
#print(label_dic)
#4. label text to conll
output = labeltext_to_conll_fasttoken(input_labtext,label_dic)
# print('......output.....\n',output.getvalue())
# fout=open(outfile,'w',encoding='utf-8')
# fout.write(input_nonest.getvalue())
# fout.close()
return output
if __name__=='__main__':
infile='../../TrainingSet/No100/NER.Train.txt'
output=pubtator_to_conll(infile)
fout=open('../../TrainingSet/No100/NER.Train.conll','w',encoding='utf-8')
fout.write(output.getvalue())
fout.close()
output.close()
|