File size: 25,292 Bytes
346a01f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
2023-10-11 09:57:56,378 ----------------------------------------------------------------------------------------------------
2023-10-11 09:57:56,380 Model: "SequenceTagger(
  (embeddings): ByT5Embeddings(
    (model): T5EncoderModel(
      (shared): Embedding(384, 1472)
      (encoder): T5Stack(
        (embed_tokens): Embedding(384, 1472)
        (block): ModuleList(
          (0): T5Block(
            (layer): ModuleList(
              (0): T5LayerSelfAttention(
                (SelfAttention): T5Attention(
                  (q): Linear(in_features=1472, out_features=384, bias=False)
                  (k): Linear(in_features=1472, out_features=384, bias=False)
                  (v): Linear(in_features=1472, out_features=384, bias=False)
                  (o): Linear(in_features=384, out_features=1472, bias=False)
                  (relative_attention_bias): Embedding(32, 6)
                )
                (layer_norm): FusedRMSNorm(torch.Size([1472]), eps=1e-06, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (1): T5LayerFF(
                (DenseReluDense): T5DenseGatedActDense(
                  (wi_0): Linear(in_features=1472, out_features=3584, bias=False)
                  (wi_1): Linear(in_features=1472, out_features=3584, bias=False)
                  (wo): Linear(in_features=3584, out_features=1472, bias=False)
                  (dropout): Dropout(p=0.1, inplace=False)
                  (act): NewGELUActivation()
                )
                (layer_norm): FusedRMSNorm(torch.Size([1472]), eps=1e-06, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
          )
          (1-11): 11 x T5Block(
            (layer): ModuleList(
              (0): T5LayerSelfAttention(
                (SelfAttention): T5Attention(
                  (q): Linear(in_features=1472, out_features=384, bias=False)
                  (k): Linear(in_features=1472, out_features=384, bias=False)
                  (v): Linear(in_features=1472, out_features=384, bias=False)
                  (o): Linear(in_features=384, out_features=1472, bias=False)
                )
                (layer_norm): FusedRMSNorm(torch.Size([1472]), eps=1e-06, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (1): T5LayerFF(
                (DenseReluDense): T5DenseGatedActDense(
                  (wi_0): Linear(in_features=1472, out_features=3584, bias=False)
                  (wi_1): Linear(in_features=1472, out_features=3584, bias=False)
                  (wo): Linear(in_features=3584, out_features=1472, bias=False)
                  (dropout): Dropout(p=0.1, inplace=False)
                  (act): NewGELUActivation()
                )
                (layer_norm): FusedRMSNorm(torch.Size([1472]), eps=1e-06, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
          )
        )
        (final_layer_norm): FusedRMSNorm(torch.Size([1472]), eps=1e-06, elementwise_affine=True)
        (dropout): Dropout(p=0.1, inplace=False)
      )
    )
  )
  (locked_dropout): LockedDropout(p=0.5)
  (linear): Linear(in_features=1472, out_features=17, bias=True)
  (loss_function): CrossEntropyLoss()
)"
2023-10-11 09:57:56,380 ----------------------------------------------------------------------------------------------------
2023-10-11 09:57:56,381 MultiCorpus: 1085 train + 148 dev + 364 test sentences
 - NER_HIPE_2022 Corpus: 1085 train + 148 dev + 364 test sentences - /root/.flair/datasets/ner_hipe_2022/v2.1/newseye/sv/with_doc_seperator
2023-10-11 09:57:56,381 ----------------------------------------------------------------------------------------------------
2023-10-11 09:57:56,381 Train:  1085 sentences
2023-10-11 09:57:56,381         (train_with_dev=False, train_with_test=False)
2023-10-11 09:57:56,381 ----------------------------------------------------------------------------------------------------
2023-10-11 09:57:56,381 Training Params:
2023-10-11 09:57:56,381  - learning_rate: "0.00016" 
2023-10-11 09:57:56,381  - mini_batch_size: "4"
2023-10-11 09:57:56,381  - max_epochs: "10"
2023-10-11 09:57:56,381  - shuffle: "True"
2023-10-11 09:57:56,381 ----------------------------------------------------------------------------------------------------
2023-10-11 09:57:56,381 Plugins:
2023-10-11 09:57:56,381  - TensorboardLogger
2023-10-11 09:57:56,382  - LinearScheduler | warmup_fraction: '0.1'
2023-10-11 09:57:56,382 ----------------------------------------------------------------------------------------------------
2023-10-11 09:57:56,382 Final evaluation on model from best epoch (best-model.pt)
2023-10-11 09:57:56,382  - metric: "('micro avg', 'f1-score')"
2023-10-11 09:57:56,382 ----------------------------------------------------------------------------------------------------
2023-10-11 09:57:56,382 Computation:
2023-10-11 09:57:56,382  - compute on device: cuda:0
2023-10-11 09:57:56,382  - embedding storage: none
2023-10-11 09:57:56,382 ----------------------------------------------------------------------------------------------------
2023-10-11 09:57:56,382 Model training base path: "hmbench-newseye/sv-hmbyt5-preliminary/byt5-small-historic-multilingual-span20-flax-bs4-wsFalse-e10-lr0.00016-poolingfirst-layers-1-crfFalse-2"
2023-10-11 09:57:56,382 ----------------------------------------------------------------------------------------------------
2023-10-11 09:57:56,382 ----------------------------------------------------------------------------------------------------
2023-10-11 09:57:56,382 Logging anything other than scalars to TensorBoard is currently not supported.
2023-10-11 09:58:05,782 epoch 1 - iter 27/272 - loss 2.84961659 - time (sec): 9.40 - samples/sec: 576.00 - lr: 0.000015 - momentum: 0.000000
2023-10-11 09:58:14,469 epoch 1 - iter 54/272 - loss 2.83915292 - time (sec): 18.08 - samples/sec: 545.61 - lr: 0.000031 - momentum: 0.000000
2023-10-11 09:58:23,736 epoch 1 - iter 81/272 - loss 2.81803749 - time (sec): 27.35 - samples/sec: 553.45 - lr: 0.000047 - momentum: 0.000000
2023-10-11 09:58:33,589 epoch 1 - iter 108/272 - loss 2.74804522 - time (sec): 37.20 - samples/sec: 564.68 - lr: 0.000063 - momentum: 0.000000
2023-10-11 09:58:42,886 epoch 1 - iter 135/272 - loss 2.65294364 - time (sec): 46.50 - samples/sec: 566.48 - lr: 0.000079 - momentum: 0.000000
2023-10-11 09:58:51,421 epoch 1 - iter 162/272 - loss 2.56578574 - time (sec): 55.04 - samples/sec: 556.46 - lr: 0.000095 - momentum: 0.000000
2023-10-11 09:59:00,707 epoch 1 - iter 189/272 - loss 2.45465098 - time (sec): 64.32 - samples/sec: 554.14 - lr: 0.000111 - momentum: 0.000000
2023-10-11 09:59:09,883 epoch 1 - iter 216/272 - loss 2.33901060 - time (sec): 73.50 - samples/sec: 554.24 - lr: 0.000126 - momentum: 0.000000
2023-10-11 09:59:19,912 epoch 1 - iter 243/272 - loss 2.19029882 - time (sec): 83.53 - samples/sec: 558.64 - lr: 0.000142 - momentum: 0.000000
2023-10-11 09:59:29,206 epoch 1 - iter 270/272 - loss 2.07205638 - time (sec): 92.82 - samples/sec: 559.30 - lr: 0.000158 - momentum: 0.000000
2023-10-11 09:59:29,534 ----------------------------------------------------------------------------------------------------
2023-10-11 09:59:29,535 EPOCH 1 done: loss 2.0705 - lr: 0.000158
2023-10-11 09:59:34,650 DEV : loss 0.7345565557479858 - f1-score (micro avg)  0.0
2023-10-11 09:59:34,658 ----------------------------------------------------------------------------------------------------
2023-10-11 09:59:44,295 epoch 2 - iter 27/272 - loss 0.70414994 - time (sec): 9.63 - samples/sec: 601.26 - lr: 0.000158 - momentum: 0.000000
2023-10-11 09:59:53,165 epoch 2 - iter 54/272 - loss 0.63540563 - time (sec): 18.50 - samples/sec: 581.59 - lr: 0.000157 - momentum: 0.000000
2023-10-11 10:00:02,825 epoch 2 - iter 81/272 - loss 0.63286981 - time (sec): 28.16 - samples/sec: 590.61 - lr: 0.000155 - momentum: 0.000000
2023-10-11 10:00:12,024 epoch 2 - iter 108/272 - loss 0.60068837 - time (sec): 37.36 - samples/sec: 583.88 - lr: 0.000153 - momentum: 0.000000
2023-10-11 10:00:21,275 epoch 2 - iter 135/272 - loss 0.58169819 - time (sec): 46.61 - samples/sec: 578.50 - lr: 0.000151 - momentum: 0.000000
2023-10-11 10:00:29,801 epoch 2 - iter 162/272 - loss 0.55542542 - time (sec): 55.14 - samples/sec: 569.54 - lr: 0.000149 - momentum: 0.000000
2023-10-11 10:00:38,726 epoch 2 - iter 189/272 - loss 0.54212044 - time (sec): 64.07 - samples/sec: 563.12 - lr: 0.000148 - momentum: 0.000000
2023-10-11 10:00:48,281 epoch 2 - iter 216/272 - loss 0.51858578 - time (sec): 73.62 - samples/sec: 561.94 - lr: 0.000146 - momentum: 0.000000
2023-10-11 10:00:57,669 epoch 2 - iter 243/272 - loss 0.50379454 - time (sec): 83.01 - samples/sec: 557.51 - lr: 0.000144 - momentum: 0.000000
2023-10-11 10:01:08,182 epoch 2 - iter 270/272 - loss 0.49383828 - time (sec): 93.52 - samples/sec: 554.15 - lr: 0.000142 - momentum: 0.000000
2023-10-11 10:01:08,590 ----------------------------------------------------------------------------------------------------
2023-10-11 10:01:08,590 EPOCH 2 done: loss 0.4930 - lr: 0.000142
2023-10-11 10:01:14,578 DEV : loss 0.3049907982349396 - f1-score (micro avg)  0.2867
2023-10-11 10:01:14,589 saving best model
2023-10-11 10:01:15,564 ----------------------------------------------------------------------------------------------------
2023-10-11 10:01:26,175 epoch 3 - iter 27/272 - loss 0.36825189 - time (sec): 10.61 - samples/sec: 495.68 - lr: 0.000141 - momentum: 0.000000
2023-10-11 10:01:36,526 epoch 3 - iter 54/272 - loss 0.35828698 - time (sec): 20.96 - samples/sec: 489.94 - lr: 0.000139 - momentum: 0.000000
2023-10-11 10:01:46,586 epoch 3 - iter 81/272 - loss 0.33371894 - time (sec): 31.02 - samples/sec: 489.93 - lr: 0.000137 - momentum: 0.000000
2023-10-11 10:01:56,178 epoch 3 - iter 108/272 - loss 0.32842770 - time (sec): 40.61 - samples/sec: 500.40 - lr: 0.000135 - momentum: 0.000000
2023-10-11 10:02:06,182 epoch 3 - iter 135/272 - loss 0.32494522 - time (sec): 50.62 - samples/sec: 513.93 - lr: 0.000133 - momentum: 0.000000
2023-10-11 10:02:15,811 epoch 3 - iter 162/272 - loss 0.31495256 - time (sec): 60.24 - samples/sec: 514.72 - lr: 0.000132 - momentum: 0.000000
2023-10-11 10:02:26,550 epoch 3 - iter 189/272 - loss 0.31307865 - time (sec): 70.98 - samples/sec: 525.09 - lr: 0.000130 - momentum: 0.000000
2023-10-11 10:02:36,602 epoch 3 - iter 216/272 - loss 0.30261968 - time (sec): 81.04 - samples/sec: 527.34 - lr: 0.000128 - momentum: 0.000000
2023-10-11 10:02:45,602 epoch 3 - iter 243/272 - loss 0.30154536 - time (sec): 90.04 - samples/sec: 520.58 - lr: 0.000126 - momentum: 0.000000
2023-10-11 10:02:55,043 epoch 3 - iter 270/272 - loss 0.29990213 - time (sec): 99.48 - samples/sec: 519.97 - lr: 0.000125 - momentum: 0.000000
2023-10-11 10:02:55,531 ----------------------------------------------------------------------------------------------------
2023-10-11 10:02:55,531 EPOCH 3 done: loss 0.3001 - lr: 0.000125
2023-10-11 10:03:01,411 DEV : loss 0.23118416965007782 - f1-score (micro avg)  0.4514
2023-10-11 10:03:01,419 saving best model
2023-10-11 10:03:03,968 ----------------------------------------------------------------------------------------------------
2023-10-11 10:03:13,204 epoch 4 - iter 27/272 - loss 0.26389527 - time (sec): 9.23 - samples/sec: 543.60 - lr: 0.000123 - momentum: 0.000000
2023-10-11 10:03:22,197 epoch 4 - iter 54/272 - loss 0.23946997 - time (sec): 18.22 - samples/sec: 524.90 - lr: 0.000121 - momentum: 0.000000
2023-10-11 10:03:32,348 epoch 4 - iter 81/272 - loss 0.22494046 - time (sec): 28.37 - samples/sec: 549.85 - lr: 0.000119 - momentum: 0.000000
2023-10-11 10:03:42,207 epoch 4 - iter 108/272 - loss 0.22128238 - time (sec): 38.23 - samples/sec: 551.86 - lr: 0.000117 - momentum: 0.000000
2023-10-11 10:03:51,557 epoch 4 - iter 135/272 - loss 0.21790054 - time (sec): 47.58 - samples/sec: 546.55 - lr: 0.000116 - momentum: 0.000000
2023-10-11 10:04:01,550 epoch 4 - iter 162/272 - loss 0.21355483 - time (sec): 57.58 - samples/sec: 549.19 - lr: 0.000114 - momentum: 0.000000
2023-10-11 10:04:10,733 epoch 4 - iter 189/272 - loss 0.21461498 - time (sec): 66.76 - samples/sec: 543.62 - lr: 0.000112 - momentum: 0.000000
2023-10-11 10:04:20,210 epoch 4 - iter 216/272 - loss 0.21161711 - time (sec): 76.24 - samples/sec: 543.55 - lr: 0.000110 - momentum: 0.000000
2023-10-11 10:04:29,699 epoch 4 - iter 243/272 - loss 0.21439789 - time (sec): 85.72 - samples/sec: 544.83 - lr: 0.000109 - momentum: 0.000000
2023-10-11 10:04:38,989 epoch 4 - iter 270/272 - loss 0.21064388 - time (sec): 95.01 - samples/sec: 545.07 - lr: 0.000107 - momentum: 0.000000
2023-10-11 10:04:39,417 ----------------------------------------------------------------------------------------------------
2023-10-11 10:04:39,418 EPOCH 4 done: loss 0.2106 - lr: 0.000107
2023-10-11 10:04:45,299 DEV : loss 0.17590400576591492 - f1-score (micro avg)  0.5839
2023-10-11 10:04:45,309 saving best model
2023-10-11 10:04:47,847 ----------------------------------------------------------------------------------------------------
2023-10-11 10:04:56,859 epoch 5 - iter 27/272 - loss 0.16095320 - time (sec): 9.01 - samples/sec: 518.32 - lr: 0.000105 - momentum: 0.000000
2023-10-11 10:05:06,266 epoch 5 - iter 54/272 - loss 0.15303063 - time (sec): 18.41 - samples/sec: 545.17 - lr: 0.000103 - momentum: 0.000000
2023-10-11 10:05:15,581 epoch 5 - iter 81/272 - loss 0.14715890 - time (sec): 27.73 - samples/sec: 553.13 - lr: 0.000101 - momentum: 0.000000
2023-10-11 10:05:24,566 epoch 5 - iter 108/272 - loss 0.14859354 - time (sec): 36.71 - samples/sec: 551.36 - lr: 0.000100 - momentum: 0.000000
2023-10-11 10:05:33,383 epoch 5 - iter 135/272 - loss 0.13938521 - time (sec): 45.53 - samples/sec: 549.22 - lr: 0.000098 - momentum: 0.000000
2023-10-11 10:05:43,089 epoch 5 - iter 162/272 - loss 0.13872093 - time (sec): 55.24 - samples/sec: 559.36 - lr: 0.000096 - momentum: 0.000000
2023-10-11 10:05:52,177 epoch 5 - iter 189/272 - loss 0.14314448 - time (sec): 64.33 - samples/sec: 558.08 - lr: 0.000094 - momentum: 0.000000
2023-10-11 10:06:01,633 epoch 5 - iter 216/272 - loss 0.14519265 - time (sec): 73.78 - samples/sec: 559.16 - lr: 0.000093 - momentum: 0.000000
2023-10-11 10:06:11,241 epoch 5 - iter 243/272 - loss 0.14574570 - time (sec): 83.39 - samples/sec: 559.96 - lr: 0.000091 - momentum: 0.000000
2023-10-11 10:06:20,699 epoch 5 - iter 270/272 - loss 0.14307060 - time (sec): 92.85 - samples/sec: 556.93 - lr: 0.000089 - momentum: 0.000000
2023-10-11 10:06:21,219 ----------------------------------------------------------------------------------------------------
2023-10-11 10:06:21,219 EPOCH 5 done: loss 0.1430 - lr: 0.000089
2023-10-11 10:06:26,814 DEV : loss 0.15896683931350708 - f1-score (micro avg)  0.6123
2023-10-11 10:06:26,824 saving best model
2023-10-11 10:06:29,363 ----------------------------------------------------------------------------------------------------
2023-10-11 10:06:39,090 epoch 6 - iter 27/272 - loss 0.12861859 - time (sec): 9.72 - samples/sec: 563.75 - lr: 0.000087 - momentum: 0.000000
2023-10-11 10:06:48,027 epoch 6 - iter 54/272 - loss 0.12625714 - time (sec): 18.66 - samples/sec: 546.90 - lr: 0.000085 - momentum: 0.000000
2023-10-11 10:06:57,647 epoch 6 - iter 81/272 - loss 0.11812378 - time (sec): 28.28 - samples/sec: 551.60 - lr: 0.000084 - momentum: 0.000000
2023-10-11 10:07:07,496 epoch 6 - iter 108/272 - loss 0.11590135 - time (sec): 38.13 - samples/sec: 563.80 - lr: 0.000082 - momentum: 0.000000
2023-10-11 10:07:16,590 epoch 6 - iter 135/272 - loss 0.11257005 - time (sec): 47.22 - samples/sec: 548.24 - lr: 0.000080 - momentum: 0.000000
2023-10-11 10:07:26,339 epoch 6 - iter 162/272 - loss 0.10607560 - time (sec): 56.97 - samples/sec: 553.59 - lr: 0.000078 - momentum: 0.000000
2023-10-11 10:07:35,893 epoch 6 - iter 189/272 - loss 0.10194287 - time (sec): 66.53 - samples/sec: 550.51 - lr: 0.000077 - momentum: 0.000000
2023-10-11 10:07:45,318 epoch 6 - iter 216/272 - loss 0.10614524 - time (sec): 75.95 - samples/sec: 547.98 - lr: 0.000075 - momentum: 0.000000
2023-10-11 10:07:54,921 epoch 6 - iter 243/272 - loss 0.10334886 - time (sec): 85.55 - samples/sec: 547.68 - lr: 0.000073 - momentum: 0.000000
2023-10-11 10:08:04,092 epoch 6 - iter 270/272 - loss 0.10347814 - time (sec): 94.72 - samples/sec: 546.02 - lr: 0.000071 - momentum: 0.000000
2023-10-11 10:08:04,598 ----------------------------------------------------------------------------------------------------
2023-10-11 10:08:04,599 EPOCH 6 done: loss 0.1033 - lr: 0.000071
2023-10-11 10:08:10,290 DEV : loss 0.1453726589679718 - f1-score (micro avg)  0.6964
2023-10-11 10:08:10,299 saving best model
2023-10-11 10:08:12,837 ----------------------------------------------------------------------------------------------------
2023-10-11 10:08:22,005 epoch 7 - iter 27/272 - loss 0.08200013 - time (sec): 9.16 - samples/sec: 526.74 - lr: 0.000069 - momentum: 0.000000
2023-10-11 10:08:31,942 epoch 7 - iter 54/272 - loss 0.07169928 - time (sec): 19.10 - samples/sec: 549.62 - lr: 0.000068 - momentum: 0.000000
2023-10-11 10:08:41,790 epoch 7 - iter 81/272 - loss 0.06750559 - time (sec): 28.95 - samples/sec: 552.18 - lr: 0.000066 - momentum: 0.000000
2023-10-11 10:08:51,214 epoch 7 - iter 108/272 - loss 0.06876153 - time (sec): 38.37 - samples/sec: 549.77 - lr: 0.000064 - momentum: 0.000000
2023-10-11 10:09:01,123 epoch 7 - iter 135/272 - loss 0.07382666 - time (sec): 48.28 - samples/sec: 549.32 - lr: 0.000062 - momentum: 0.000000
2023-10-11 10:09:10,687 epoch 7 - iter 162/272 - loss 0.07376310 - time (sec): 57.85 - samples/sec: 542.87 - lr: 0.000061 - momentum: 0.000000
2023-10-11 10:09:19,909 epoch 7 - iter 189/272 - loss 0.07298171 - time (sec): 67.07 - samples/sec: 533.52 - lr: 0.000059 - momentum: 0.000000
2023-10-11 10:09:30,231 epoch 7 - iter 216/272 - loss 0.07154073 - time (sec): 77.39 - samples/sec: 535.81 - lr: 0.000057 - momentum: 0.000000
2023-10-11 10:09:39,463 epoch 7 - iter 243/272 - loss 0.07659368 - time (sec): 86.62 - samples/sec: 535.04 - lr: 0.000055 - momentum: 0.000000
2023-10-11 10:09:49,375 epoch 7 - iter 270/272 - loss 0.07547255 - time (sec): 96.53 - samples/sec: 536.22 - lr: 0.000054 - momentum: 0.000000
2023-10-11 10:09:49,841 ----------------------------------------------------------------------------------------------------
2023-10-11 10:09:49,841 EPOCH 7 done: loss 0.0753 - lr: 0.000054
2023-10-11 10:09:55,608 DEV : loss 0.1472298800945282 - f1-score (micro avg)  0.7478
2023-10-11 10:09:55,617 saving best model
2023-10-11 10:09:58,161 ----------------------------------------------------------------------------------------------------
2023-10-11 10:10:07,364 epoch 8 - iter 27/272 - loss 0.07327268 - time (sec): 9.20 - samples/sec: 499.40 - lr: 0.000052 - momentum: 0.000000
2023-10-11 10:10:16,567 epoch 8 - iter 54/272 - loss 0.05912708 - time (sec): 18.40 - samples/sec: 510.50 - lr: 0.000050 - momentum: 0.000000
2023-10-11 10:10:26,716 epoch 8 - iter 81/272 - loss 0.06315843 - time (sec): 28.55 - samples/sec: 538.72 - lr: 0.000048 - momentum: 0.000000
2023-10-11 10:10:36,403 epoch 8 - iter 108/272 - loss 0.06440136 - time (sec): 38.24 - samples/sec: 540.82 - lr: 0.000046 - momentum: 0.000000
2023-10-11 10:10:45,979 epoch 8 - iter 135/272 - loss 0.06543166 - time (sec): 47.81 - samples/sec: 541.26 - lr: 0.000045 - momentum: 0.000000
2023-10-11 10:10:54,660 epoch 8 - iter 162/272 - loss 0.06830101 - time (sec): 56.49 - samples/sec: 531.16 - lr: 0.000043 - momentum: 0.000000
2023-10-11 10:11:04,624 epoch 8 - iter 189/272 - loss 0.06687904 - time (sec): 66.46 - samples/sec: 535.98 - lr: 0.000041 - momentum: 0.000000
2023-10-11 10:11:15,233 epoch 8 - iter 216/272 - loss 0.06417230 - time (sec): 77.07 - samples/sec: 545.82 - lr: 0.000039 - momentum: 0.000000
2023-10-11 10:11:24,573 epoch 8 - iter 243/272 - loss 0.06203206 - time (sec): 86.41 - samples/sec: 541.39 - lr: 0.000038 - momentum: 0.000000
2023-10-11 10:11:34,240 epoch 8 - iter 270/272 - loss 0.05987987 - time (sec): 96.07 - samples/sec: 539.08 - lr: 0.000036 - momentum: 0.000000
2023-10-11 10:11:34,685 ----------------------------------------------------------------------------------------------------
2023-10-11 10:11:34,686 EPOCH 8 done: loss 0.0599 - lr: 0.000036
2023-10-11 10:11:40,788 DEV : loss 0.1424403041601181 - f1-score (micro avg)  0.7653
2023-10-11 10:11:40,796 saving best model
2023-10-11 10:11:43,341 ----------------------------------------------------------------------------------------------------
2023-10-11 10:11:51,856 epoch 9 - iter 27/272 - loss 0.07666643 - time (sec): 8.51 - samples/sec: 504.34 - lr: 0.000034 - momentum: 0.000000
2023-10-11 10:12:01,071 epoch 9 - iter 54/272 - loss 0.07280220 - time (sec): 17.73 - samples/sec: 533.59 - lr: 0.000032 - momentum: 0.000000
2023-10-11 10:12:10,786 epoch 9 - iter 81/272 - loss 0.05972387 - time (sec): 27.44 - samples/sec: 527.72 - lr: 0.000030 - momentum: 0.000000
2023-10-11 10:12:20,137 epoch 9 - iter 108/272 - loss 0.06294634 - time (sec): 36.79 - samples/sec: 531.16 - lr: 0.000029 - momentum: 0.000000
2023-10-11 10:12:29,121 epoch 9 - iter 135/272 - loss 0.06234610 - time (sec): 45.78 - samples/sec: 522.90 - lr: 0.000027 - momentum: 0.000000
2023-10-11 10:12:39,294 epoch 9 - iter 162/272 - loss 0.05914625 - time (sec): 55.95 - samples/sec: 534.53 - lr: 0.000025 - momentum: 0.000000
2023-10-11 10:12:48,743 epoch 9 - iter 189/272 - loss 0.05774082 - time (sec): 65.40 - samples/sec: 535.18 - lr: 0.000023 - momentum: 0.000000
2023-10-11 10:12:58,443 epoch 9 - iter 216/272 - loss 0.05539923 - time (sec): 75.10 - samples/sec: 537.09 - lr: 0.000022 - momentum: 0.000000
2023-10-11 10:13:08,510 epoch 9 - iter 243/272 - loss 0.05258815 - time (sec): 85.16 - samples/sec: 543.20 - lr: 0.000020 - momentum: 0.000000
2023-10-11 10:13:18,255 epoch 9 - iter 270/272 - loss 0.05055787 - time (sec): 94.91 - samples/sec: 545.35 - lr: 0.000018 - momentum: 0.000000
2023-10-11 10:13:18,703 ----------------------------------------------------------------------------------------------------
2023-10-11 10:13:18,703 EPOCH 9 done: loss 0.0506 - lr: 0.000018
2023-10-11 10:13:24,318 DEV : loss 0.14669708907604218 - f1-score (micro avg)  0.7576
2023-10-11 10:13:24,327 ----------------------------------------------------------------------------------------------------
2023-10-11 10:13:34,114 epoch 10 - iter 27/272 - loss 0.05704288 - time (sec): 9.79 - samples/sec: 547.25 - lr: 0.000016 - momentum: 0.000000
2023-10-11 10:13:43,165 epoch 10 - iter 54/272 - loss 0.06282741 - time (sec): 18.84 - samples/sec: 532.27 - lr: 0.000014 - momentum: 0.000000
2023-10-11 10:13:52,252 epoch 10 - iter 81/272 - loss 0.05470713 - time (sec): 27.92 - samples/sec: 535.00 - lr: 0.000013 - momentum: 0.000000
2023-10-11 10:14:01,156 epoch 10 - iter 108/272 - loss 0.05095954 - time (sec): 36.83 - samples/sec: 534.87 - lr: 0.000011 - momentum: 0.000000
2023-10-11 10:14:11,443 epoch 10 - iter 135/272 - loss 0.04981593 - time (sec): 47.11 - samples/sec: 550.36 - lr: 0.000009 - momentum: 0.000000
2023-10-11 10:14:20,845 epoch 10 - iter 162/272 - loss 0.04680562 - time (sec): 56.52 - samples/sec: 545.26 - lr: 0.000007 - momentum: 0.000000
2023-10-11 10:14:30,321 epoch 10 - iter 189/272 - loss 0.04579138 - time (sec): 65.99 - samples/sec: 545.81 - lr: 0.000005 - momentum: 0.000000
2023-10-11 10:14:39,821 epoch 10 - iter 216/272 - loss 0.04474162 - time (sec): 75.49 - samples/sec: 548.68 - lr: 0.000004 - momentum: 0.000000
2023-10-11 10:14:49,718 epoch 10 - iter 243/272 - loss 0.04341634 - time (sec): 85.39 - samples/sec: 549.72 - lr: 0.000002 - momentum: 0.000000
2023-10-11 10:14:58,779 epoch 10 - iter 270/272 - loss 0.04483462 - time (sec): 94.45 - samples/sec: 547.28 - lr: 0.000000 - momentum: 0.000000
2023-10-11 10:14:59,278 ----------------------------------------------------------------------------------------------------
2023-10-11 10:14:59,278 EPOCH 10 done: loss 0.0447 - lr: 0.000000
2023-10-11 10:15:04,833 DEV : loss 0.14579297602176666 - f1-score (micro avg)  0.7607
2023-10-11 10:15:05,711 ----------------------------------------------------------------------------------------------------
2023-10-11 10:15:05,713 Loading model from best epoch ...
2023-10-11 10:15:09,559 SequenceTagger predicts: Dictionary with 17 tags: O, S-LOC, B-LOC, E-LOC, I-LOC, S-PER, B-PER, E-PER, I-PER, S-HumanProd, B-HumanProd, E-HumanProd, I-HumanProd, S-ORG, B-ORG, E-ORG, I-ORG
2023-10-11 10:15:22,453 
Results:
- F-score (micro) 0.7359
- F-score (macro) 0.6371
- Accuracy 0.6043

By class:
              precision    recall  f1-score   support

         LOC     0.7330    0.8622    0.7923       312
         PER     0.6784    0.8317    0.7473       208
         ORG     0.3415    0.2545    0.2917        55
   HumanProd     0.6129    0.8636    0.7170        22

   micro avg     0.6844    0.7956    0.7359       597
   macro avg     0.5914    0.7030    0.6371       597
weighted avg     0.6735    0.7956    0.7277       597

2023-10-11 10:15:22,454 ----------------------------------------------------------------------------------------------------